Fragility curves for rapid assessment of earthquake-induced damage to earth-retaining walls starting from optimal seismic intensity measures

2022 ◽  
Vol 152 ◽  
pp. 107017
Author(s):  
Renato Maria Cosentini ◽  
Francesca Bozzoni
Author(s):  
Yeudy F. Vargas-Alzate ◽  
Jorge E. Hurtado ◽  
Luis G. Pujades

AbstractThis paper focuses on the probabilistic analysis of Intensity Measures (IMs) and Engineering Demand Parameters (EDPs) in the context of earthquake-induced ground motions. Several statistical properties, which are desirable in IMs when they are used to predict EDPs, have been analysed. Specifically, efficiency, sufficiency and steadfastness have been quantified for a set of IMs with respect to two EDPs: the maximum inter-storey drift ratio, MIDR, and the maximum floor acceleration, MFA. Steadfastness is a new statistical property proposed in this article, which is related to the ability of IMs to forecast EDPs for large building suites. In other words, this means that efficiency does not significantly vary when different types of buildings are simultanously considered in the statistical analyses. This property allows reducing the number of calculations when performing seismic risk estimations at urban level since, for instance, a large variety of fragility curves, representing specific building typologies, can be grouped together within a more generic one. The main sources of uncertainty involved in the calculation of the seismic risk have been considered in the analysis. To do so, the nonlinear dynamic responses of probabilistic multi-degree-of-freedom building models, subjected to a large data set of ground motion records, have been calculated. These models have been generated to simulate the dynamic behavior of reinforced concrete buildings whose number of stories vary from 3 to 13. 18 spectrum-, energy- and direct-accelerogram-based IMs have been considered herein. Then, from clouds of IM-EDP points, efficiency, sufficiency and steadfastness have been quantified. For MIDR, results show that IMs based on spectral velocity are more efficient and steadfast than the ones based on spectral acceleration; spectral velocity averaged in a range of periods, AvSv, has shown to be the most efficient IM with an adequate level of steadfastness. For MFA, spectral acceleration-based-IMs are more efficient than velocity-based ones. A comparison is also presented on the use of linear vs quadratic regression models, and their implications on the derivation of fragility functions. Concerning sufficiency, most of the 18 IMs analysed do not have this property. Nonetheless, multi-regression models have been employed to address this lack of sufficiency allowing to obtain a so-called ‘ideal’ IM.


2018 ◽  
Vol 47 (9) ◽  
pp. 1844-1863 ◽  
Author(s):  
Konstantinos Bakalis ◽  
Mohsen Kohrangi ◽  
Dimitrios Vamvatsikos

2021 ◽  
pp. 136943322110561
Author(s):  
Arsam Taslimi ◽  
Mohsen Tehranizadeh

According to the observations of past earthquakes, the vertical ground motions have had a striking influence on the engineering structures, especially reinforced concrete ones. Nevertheless, the number of studies on their aftermath is insufficient, and despite some endeavors done by researchers, there is still a shortage of knowledge about the inclusion of vertical excitation on the seismic performance and the collapse probability of RC buildings. Hence, the variation in the collapse risk of three high-rise RC frame-core wall structures when they undergo bi-directional ground motions is discussed. In this paper, incremental dynamic analyses are carried out under two circumstances, including the horizontal (H) and the combined horizontal and vertical (H+V) earthquakes, and the seismic fragility curves are derived. The inter-story drift ratio corresponding to the onset of collapse has also been defined. The buildings collapse risk under the two circumstances is obtained from the risk integral. Results indicate that in the H+V state, structures meet the collapse criteria for lower intensity measures. Thus, the collapse risk increases as the structures are subjected to bi-directional seismic loads, and the consideration of this effect leads to a more accurate evaluation of buildings seismic performance.


2019 ◽  
Vol 280 ◽  
pp. 01005
Author(s):  
Widodo Pawirodikromo

The concept of seismic intensity measures has long beendiscussed and has been collected by researchers among whom are by [1-6]. However, the effect of earthquake duration on the structural response hasnot received attention from the researcher so it has not been seen in the listof the existing seismic intensity measures. In the spectral response, forexample, it has been accommodated peak value and earthquake frequencycontent but has not accommodated the duration of the earthquake. Theeffect of earthquake duration on a response, damage or collapse capacity ofthe structure has been done by the researchers [7-10]. The spectrallyequivalent approach/control has been used by [9,10]., while the collapsecapacity approach is cursed by [8]. The use of the classification of theearthquake frequency content as independent variables has been suggestedby [7]. In this study, the classification of earthquake frequency (lowfrequency), earthquake duration as the independent variable and peakacceleration control have been used. Single degree of Freedom (SDOF)structures excited by 15-earthquakes with effective durations varyingbetween te = 6.34 to 30.18 s have been used. The results showed that notall seismic intensity measure used had a strong relationship with effectiveduration. The earthquake effective duration has a positive relationship withthe damage index but the relationship is relatively weak


2013 ◽  
Vol 739 ◽  
pp. 309-313 ◽  
Author(s):  
Pei Ju Chang

This study focus on derivation of such fragility curves using classic mid-story isolation and reduction structures (MIRS) in China metropolis. This study focus on derivation of such fragility curves using conventional industrial frames with masonry infill wall. A set of stochastic earthquake waves compatible with the response spectrum of China seismic code selected to represent the variability in ground motion. Dynamic inelastic time history analysis was used to analyze the random sample of structures. MIRS seismic capability of longitudinal and transversal orientation is different. Stochastic damage scatter diagrams based different seismic intensity index are obtained. Seismic fragility of longitudinal axis (Y axis) is larger than transversal axis (X axis) of frames under major earthquake obviously.


Sign in / Sign up

Export Citation Format

Share Document