Potable water by solar thermal distillation in solar salt works and performance enhancement by integrating with evacuated tubes

Solar Energy ◽  
2019 ◽  
Vol 188 ◽  
pp. 561-572 ◽  
Author(s):  
Jaymin Patel ◽  
Bhupendra K. Markam ◽  
Subarna Maiti
Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3515
Author(s):  
Weikang Wang ◽  
Xuanchun Wei ◽  
Xinhua Cai ◽  
Hongyang Deng ◽  
Bokang Li

: The early-age carbonation curing technique is an effective way to improve the performance of cement-based materials and reduce their carbon footprint. This work investigates the early mechanical properties and microstructure of calcium sulfoaluminate (CSA) cement specimens under early-age carbonation curing, considering five factors: briquetting pressure, water–binder (w/b) ratio, starting point of carbonation curing, carbonation curing time, and carbonation curing pressure. The carbonization process and performance enhancement mechanism of CSA cement are analyzed by mercury intrusion porosimetry (MIP), thermogravimetry and derivative thermogravimetry (TG-DTG) analysis, X-ray diffraction (XRD), and scanning electron microscope (SEM). The results show that early-age carbonation curing can accelerate the hardening speed of CSA cement paste, reduce the cumulative porosity of the cement paste, refine the pore diameter distribution, and make the pore diameter distribution more uniform, thus greatly improving the early compressive strength of the paste. The most favorable w/b ratio for the carbonization reaction of CSA cement paste is between 0.15 and 0.2; the most suitable carbonation curing starting time point is 4 h after initial hydration; the carbonation curing pressure should be between 3 and 4 bar; and the most appropriate time for carbonation curing is between 6 and 12 h.


Author(s):  
Stephanie Drozek ◽  
Christopher Damm ◽  
Ryan Enot ◽  
Andrew Hjortland ◽  
Brandon Jackson ◽  
...  

The purpose of this paper is to describe the implementation of a laboratory-scale solar thermal system for the Renewable Energy Systems Laboratory at the Milwaukee School of Engineering (MSOE). The system development began as a student senior design project where students designed and fabricated a laboratory-scale solar thermal system to complement an existing commercial solar energy system on campus. The solar thermal system is designed specifically for educating engineers. This laboratory equipment, including a solar light simulator, allows for variation of operating parameters to investigate their impact on system performance. The equipment will be utilized in two courses: Applied Thermodynamics, and Renewable Energy Utilization. During the solar thermal laboratories performed in these courses, students conduct experiments based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) 93-2010 standard for testing and performance characterization of solar thermal systems. Their measurements are then used to quantify energy output, efficiency and losses of the system and subsystem components.


2017 ◽  
Vol 867 ◽  
pp. 191-194
Author(s):  
Anbu Manimaran Sukanta ◽  
M. Niranjan Sakthivel ◽  
Gopalsamy Manoranjith ◽  
Loganathan Naveen Kumar

Solar Energy is one of the forms of Renewable Energy that is available abundantly. This work is executed on the enhancement of the performance of solar parabolic trough collector using Intensified Ray Convergence System (IRCS). This paper distinguishes between the performance of solar parabolic trough collector with continuous dual axis tracking and a fixed solar parabolic trough collector (PTC) facing south (single axis tracking). The simulation and performance of the solar radiations are visualized and analyzed using TRACEPRO 6.0.2 software. The improvement in absorption of solar flux was found to be enhanced by 39.06% in PTC using dual axis tracking, absorption of solar flux increases by 52% to 200% in PTC receiver using perfect mirror than PTC using black chrome coating.


Sign in / Sign up

Export Citation Format

Share Document