Scalable dual-layer film with broadband infrared emission for sub-ambient daytime radiative cooling

2020 ◽  
Vol 208 ◽  
pp. 110393 ◽  
Author(s):  
Sheng Meng ◽  
Linshuang Long ◽  
Zuoxu Wu ◽  
Nicholas Denisuk ◽  
Yue Yang ◽  
...  
2021 ◽  
Author(s):  
Chongjia Lin ◽  
Yang Li ◽  
Cheng Chi ◽  
Ye Seul Kwon ◽  
Chi Yan Tso ◽  
...  

Abstract Daytime radiative cooling provides an eco-friendly solution to space cooling with zero energy consumption. Despite significant advances, most state-of-the-art radiative coolers show broadband infrared emission with low spectral effectiveness, which limits their cooling temperatures and climate applicabilities, especially in hot humid regions. Here we report an all-inorganic narrowband cooler comprising a solution-derived SiOxNy layer sandwiched between a reflective substrate and a self-assembly monolayer of SiO2 microspheres. It shows a high and diffusive solar reflectance (96%) and strong infrared-selective emittance (94.6%) with superior spectral effectiveness (1.44). Remarkable subambient cooling of up to 5°C was achieved under high humidity without any solar shading or convection cover at noontime in a subtropical coastal city, Hong Kong. Owing to the all-inorganic hydrophobic structure, the emitter showed outstanding resistance to ultraviolet and water in the long-term durability tests. The scalable solution-based fabrication renders this stable high-performance emitter promising for large-scale deployment in various climates.


Nano Letters ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 6974-6980
Author(s):  
Rongkang Zhu ◽  
Dawei Hu ◽  
Zhi Chen ◽  
Xiaobao Xu ◽  
Yousheng Zou ◽  
...  

Author(s):  
Ali Naqavi ◽  
Samuel P. Loke ◽  
Michael D. Kelzenberg ◽  
Emily C. Warmann ◽  
Pilar Espinet-Gonzalez ◽  
...  

2020 ◽  
Vol 74 (7) ◽  
Author(s):  
Mark H. Stockett ◽  
James N. Bull ◽  
Jack T. Buntine ◽  
Eduardo Carrascosa ◽  
Emma K. Anderson ◽  
...  

Abstract Radiative cooling of carbon cluster anions C2n+1− (n = 3–5) is investigated using the cryogenic electrostatic ion storage ring DESIREE. Two different strategies are applied to infer infrared emission on slow (milliseconds to seconds) and ultraslow (seconds to minutes) timescales. Initial cooling of the ions over the millisecond timescale is probed indirectly by monitoring the decay in the yield of spontaneous neutralization by thermionic emission. The observed cooling rates are consistent with a statistical model of thermionic electron emission in competition with infrared photon emission due to vibrational de-excitation. Slower cooling over the seconds to minutes timescale associated with infrared emission from low-frequency vibrational modes is probed using time-dependent action spectroscopy. For C9− and C11−, cooling is evidenced by the time-evolution of the yield of photo-induced neutralization following resonant excitation of electronic transitions near the detachment threshold. The cross-section for resonant photo-excitation is at least two orders of magnitude greater than for direct photodetachment. In contrast, C7− lacks electronic transitions near the detachment threshold. Graphical abstract


1997 ◽  
Vol 161 ◽  
pp. 299-311 ◽  
Author(s):  
Jean Marie Mariotti ◽  
Alain Léger ◽  
Bertrand Mennesson ◽  
Marc Ollivier

AbstractIndirect methods of detection of exo-planets (by radial velocity, astrometry, occultations,...) have revealed recently the first cases of exo-planets, and will in the near future expand our knowledge of these systems. They will provide statistical informations on the dynamical parameters: semi-major axis, eccentricities, inclinations,... But the physical nature of these planets will remain mostly unknown. Only for the larger ones (exo-Jupiters), an estimate of the mass will be accessible. To characterize in more details Earth-like exo-planets, direct detection (i.e., direct observation of photons from the planet) is required. This is a much more challenging observational program. The exo-planets are extremely faint with respect to their star: the contrast ratio is about 10−10at visible wavelengths. Also the angular size of the apparent orbit is small, typically 0.1 second of arc. While the first point calls for observations in the infrared (where the contrast goes up to 10−7) and with a coronograph, the latter implies using an interferometer. Several space projects combining these techniques have been recently proposed. They aim at surveying a few hundreds of nearby single solar-like stars in search for Earth-like planets, and at performing a low resolution spectroscopic analysis of their infrared emission in order to reveal the presence in the atmosphere of the planet of CO H2O and O3. The latter is a good tracer of the presence of oxygen which could be, like on our Earth, released by biological activity. Although extremely ambitious, these projects could be realized using space technology either already available or in development for others missions. They could be built and launched during the first decades on the next century.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


Sign in / Sign up

Export Citation Format

Share Document