Experimental study of 3D solid-liquid interfaces and their influence on directional solidification silicon ingot

2021 ◽  
Vol 224 ◽  
pp. 110991
Author(s):  
Zhiqiang Zhang ◽  
Xuegong Yu ◽  
Shuai Yuan ◽  
Deren Yang
2011 ◽  
Vol 675-677 ◽  
pp. 109-112
Author(s):  
Shu Ang Shi ◽  
Wei Dong ◽  
Shi Hai Sun ◽  
Yi Tan ◽  
Guo Bin Li ◽  
...  

The distribution of resistivity, impurity and polarity in multicrystalline silicon ingot prepared by directional solidification method was detected. The effect of impurity distribution on resistivity was also researched. The results show that the shapes of equivalence line of resistivity in the cross section and vertical section of the silicon ingot depend on the solid-liquid interface. The resistivity in the vertical section increases with the increasing of solidified height at the beginning of solidification and reaches to maximum at the polarity transition point, then decreases rapidly with the increasing of solidified height and tends to zero on the top of the ingot because of the high impurity concentration. Study proves that the variation of resistivity in the vertical section is mainly relevant to the concentration distribution of the impurities such as Al, B and P in the growth direction.


2011 ◽  
Vol 675-677 ◽  
pp. 53-56 ◽  
Author(s):  
Shi Hai Sun ◽  
Yi Tan ◽  
Hui Xing Zhang ◽  
Wei Dong ◽  
Jun Shan Zhang ◽  
...  

In this paper, the structure and composition of multicrystalline silicon ingots prepared by directional solidification with different pulling rates were analyzed to investigate the effect of pulling rate on the multicrystalline silicon ingot. The results showed that the lower pulling rate will make the site taking place constitutional supercooling move to the upper part of ingots and make the high purity area become larger. Lowering the pulling rate will decrease the impurity effective segregation coefficient and the solid-liquid interface curvature.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1502
Author(s):  
Johannes M. Parikka ◽  
Karolina Sokołowska ◽  
Nemanja Markešević ◽  
J. Jussi Toppari

The predictable nature of deoxyribonucleic acid (DNA) interactions enables assembly of DNA into almost any arbitrary shape with programmable features of nanometer precision. The recent progress of DNA nanotechnology has allowed production of an even wider gamut of possible shapes with high-yield and error-free assembly processes. Most of these structures are, however, limited in size to a nanometer scale. To overcome this limitation, a plethora of studies has been carried out to form larger structures using DNA assemblies as building blocks or tiles. Therefore, DNA tiles have become one of the most widely used building blocks for engineering large, intricate structures with nanometer precision. To create even larger assemblies with highly organized patterns, scientists have developed a variety of structural design principles and assembly methods. This review first summarizes currently available DNA tile toolboxes and the basic principles of lattice formation and hierarchical self-assembly using DNA tiles. Special emphasis is given to the forces involved in the assembly process in liquid-liquid and at solid-liquid interfaces, and how to master them to reach the optimum balance between the involved interactions for successful self-assembly. In addition, we focus on the recent approaches that have shown great potential for the controlled immobilization and positioning of DNA nanostructures on different surfaces. The ability to position DNA objects in a controllable manner on technologically relevant surfaces is one step forward towards the integration of DNA-based materials into nanoelectronic and sensor devices.


Sign in / Sign up

Export Citation Format

Share Document