A system dynamics model of green innovation and policy simulation with an application in Chinese manufacturing industry

Author(s):  
Weihong Wu ◽  
Liying Sheng ◽  
Fangcheng Tang ◽  
Aimei Zhang ◽  
Jia Liu
2012 ◽  
Vol 573-574 ◽  
pp. 710-713
Author(s):  
Hong Na Tian ◽  
Hai Tao Li

The green process innovation of manufacturing industry is a multilevel, multi index, complex and dynamic system. Applying system dynamics method, this research refines the feedback path and gives its causality and flow chart according to its general construction. Then, the system dynamics model of green process innovation is developed in order to explore the operation rules of green process innovation system in Chinese manufacturing industry.


2010 ◽  
Vol 20 (2) ◽  
pp. 59-62
Author(s):  
Patrick Einzinger ◽  
Günther Zauner ◽  
G. Ganjeizadeh-Rouhani

Systems ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 56
Author(s):  
Urmila Basu Mallick ◽  
Marja H. Bakermans ◽  
Khalid Saeed

Using Indian free-ranging dogs (FRD) as a case study, we propose a novel intervention of social integration alongside previously proposed methods for dealing with FRD populations. Our study subsumes population dynamics, funding avenues, and innovative strategies to maintain FRD welfare and provide societal benefits. We develop a comprehensive system dynamics model, featuring identifiable parameters customizable for any management context and imperative for successfully planning a widescale FRD population intervention. We examine policy resistance and simulate conventional interventions alongside the proposed social integration effort to compare monetary and social rewards, as well as costs and unintended consequences. For challenging socioeconomic ecological contexts, policy resistance is best overcome by shifting priority strategically between social integration and conventional techniques. The results suggest that social integration can financially support a long-term FRD intervention, while transforming a “pest” population into a resource for animal-assisted health interventions, law enforcement, and conservation efforts.


Urban Science ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Robert Dare

This article presents a customized system dynamics model to facilitate the informed development of policy for urban heat island mitigation within the context of future climate change, and with special emphasis on the reduction of heat-related mortality. The model incorporates a variety of components (incl.: the urban heat island effect; population dynamics; climate change impacts on temperature; and heat-related mortality) and is intended to provide urban planning and related professionals with: a facilitated means of understanding the risk of heat-related mortality within the urban heat island; and location-specific information to support the development of reasoned and targeted urban heat island mitigation policy.


Sign in / Sign up

Export Citation Format

Share Document