Direct determination of strain and composition in InGaAs nano-islands using anomalous grazing incidence x-ray diffraction

2004 ◽  
Vol 36 (1-3) ◽  
pp. 11-19 ◽  
Author(s):  
M. Sztucki ◽  
T.U. Schülli ◽  
T.H. Metzger ◽  
E. Beham ◽  
D. Schuh ◽  
...  
2007 ◽  
Vol 40 (5) ◽  
pp. 874-882 ◽  
Author(s):  
Geoffroy Prévot ◽  
Alessandro Coati ◽  
Bernard Croset ◽  
Yves Garreau

It is demonstrated that grazing-incidence X-ray diffraction is a direct tool for measuring the elastic displacement modes near the surface of a crystal. Due to the fact that X-ray diffraction is a Fourier transform of the electronic density, and thus, of the atomic positions, elastic displacement modes appear as additional spots in the reciprocal space. Their characteristics can be directly derived from the elastic constants of the material. Measuring the amplitude of the diffracted wave for these peaks allows direct determination of the force distribution at the surface, which is at the origin of the elastic displacements. Various examples of such determinations are given for self-organized surfaces and for vicinal surfaces.


1994 ◽  
Vol 89 (7) ◽  
pp. 583-586 ◽  
Author(s):  
Toshihiro Shimada ◽  
Yukito Furukawa ◽  
Etsuo Arakawa ◽  
Kunikazu Takeshita ◽  
Tadashi Matsushita ◽  
...  

1987 ◽  
Vol 26 (Part 1, No. 1) ◽  
pp. 157-161 ◽  
Author(s):  
Osamu Nittono ◽  
Yoshihiro Sadamoto ◽  
Sheng Kai Gong

2007 ◽  
Vol 22 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Jianfeng Fang ◽  
Jing Huo ◽  
Jinyuan Zhang ◽  
Yi Zheng

The structure of a chemical-vapor-deposited (CVD) diamond thin film on a Mo substrate was studied using quasi-parallel X-ray and glancing incidence techniques. Conventional X-ray diffraction analysis revealed that the sample consists of a diamond thin film, a Mo2C transition layer, and Mo substrate. The Mo2C transition layer was formed by a chemical reaction between the diamond film and the Mo substrate during the CVD process. A method for layer-thickness determination of the thin film and the transition layer was developed. This method was based on a relationship between X-ray diffraction intensities from the transition layer or its substrate and a function of grazing incidence angles. Results of glancing incidence X-ray diffraction analysis showed that thicknesses of the diamond thin film and the Mo2C transition layer were determined successfully with high precision.


Hyomen Kagaku ◽  
2016 ◽  
Vol 37 (9) ◽  
pp. 429-434 ◽  
Author(s):  
Ryohei TSURUTA ◽  
Yuta MIZUNO ◽  
Takuya HOSOKAI ◽  
Tomoyuki KOGANEZAWA ◽  
Hisao ISHII ◽  
...  

2004 ◽  
Vol 19 (2) ◽  
pp. 195-195
Author(s):  
A. Broadhurst ◽  
K. D. Rogers ◽  
D. W. Lane ◽  
T. W. Lowe

2005 ◽  
Vol 20 (3) ◽  
pp. 233-240
Author(s):  
A. Broadhurst ◽  
K. D. Rogers ◽  
D. W. Lane ◽  
T. W. Lowe

A direct method for determining powder diffraction data from a range of depths is described, where the linear absorption coefficient may vary with depth. A series of traditional data collections with varying angles of incidence are required, and the X-ray diffraction data arising from specific depths will be calculated by the transformation of these measured, angle-dependent spectra. These may then be analysed using any conventional method in order to gain information about characteristics of the sample in question at specific depths. Regularisation techniques have been used to solve the governing Fredholm integral equation to determine the depth-dependent diffractograms. The method has been validated by the use of simulated data having known model profiles, and has also been applied to experimental data from polycrystalline thin film samples.


Sign in / Sign up

Export Citation Format

Share Document