Domain structures in tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals studied by piezoresponse force microscopy

2005 ◽  
Vol 133 (5) ◽  
pp. 311-314 ◽  
Author(s):  
H.F. Yu ◽  
H.R. Zeng ◽  
H.X. Wang ◽  
G.R. Li ◽  
H.S. Luo ◽  
...  
Crystals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 65 ◽  
Author(s):  
Pavel Zelenovskiy ◽  
Evgeny Greshnyakov ◽  
Dmitry Chezganov ◽  
Lyubov Gimadeeva ◽  
Evgeny Vlasov ◽  
...  

We demonstrate the application of confocal Raman microscopy (CRM) for nondestructive imaging of ferroelectric domains both at the surface and in the bulk of lead magnesium niobate-lead titanate (PMN-PT) ferroelectric single crystals. The studied model periodical domain structure was created at a [001] cut of tetragonal-phase PMN-PT crystal by the electron beam patterning technique. It was shown that the surface CRM domain image coincides in details with the image obtained by piezoresponse force microscopy.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 855
Author(s):  
Hongli Wang ◽  
Kaiyang Zeng

The evolution of the domain structures of [001]-oriented relaxor ferroelectric 0.93PbZn1/3Nb2/3O3-0.07PbTiO3 (PZN-7%PT) single crystals as a function of temperature was investigated in situ by using piezoresponse force microscopy (PFM). It was found that the local domain structure of PZN-7%PT single crystals at room temperature is rhombohedral with nanoscale twins. Temperature-dependent domain structures showed that the phase transition process is a collective process and that the sample underwent a sequence of rhombohedral (R) → monoclinic (Mc) → tetragonal (T) → cubic (C) phase transformations when the temperature increased from 25 °C to 170 °C. The results provide direct observation of the phase transition evolution of PZN-7%PT single crystals as a function of temperature, which is of great significance to fully understand the relationships between the domain structure and phase structure of PZN-7%PT single crystals.


2020 ◽  
Vol 8 (21) ◽  
pp. 7234-7243
Author(s):  
Zeng Luo ◽  
Zenghui Liu ◽  
David Walker ◽  
Steven Huband ◽  
Pam A. Thomas ◽  
...  

Multi-scale domain structures in the BiScO3–PbTiO3 single crystal are imagined and analyzed by birefringence imaging microscopy (BIM) and piezoresponse force microscopy (PFM), revealing the local distortion in the vicinity of the domain walls.


2002 ◽  
Vol 17 (5) ◽  
pp. 936-939 ◽  
Author(s):  
Sergei V. Kalinin ◽  
Dawn A. Bonnell

Piezoresponse force microscopy (PFM) is one of the most established techniques for the observation and local modification of ferroelectric domain structures on the submicron level. Both electrostatic and electromechanical interactions contribute at the tip-surface junction in a complex manner, which has resulted in multiple controversies in the interpretation of PFM. Here we analyze the influence of experimental conditions such as tip radius of curvature, indentation force, and cantilever stiffness on PFM image contrast. These results are used to construct contrast mechanism maps, which correlate the imaging conditions with the dominant contrast mechanisms. Conditions under which materials properties can be determined quantitatively are elucidated.


Author(s):  
Hana Uršič ◽  
Uroš Prah

In recent years, ferroelectric/piezoelectric polycrystalline bulks and thick films have been extensively studied for different applications, such as sensors, actuators, transducers and caloric devices. In the majority of these applications, the electric field is applied to the working element in order to induce an electromechanical response, which is a complex phenomenon with several origins. Among them is the field-induced movement of domain walls, which is nowadays extensively studied using piezoresponse force microscopy (PFM), a technique derived from atomic force microscopy. PFM is based on the detection of the local converse piezoelectric effect in the sample; it is one of the most frequently applied methods for the characterization of the ferroelectric domain structure due to the simplicity of the sample preparation, its non-destructive nature and its relatively high imaging resolution. In this review, we focus on the PFM analysis of ferroelectric bulk ceramics and thick films. The core of the paper is divided into four sections: (i) introduction; (ii) the preparation of the samples prior to the PFM investigation; (iii) this is followed by reviews of the domain structures in polycrystalline bulks; and (iv) thick films.


Sign in / Sign up

Export Citation Format

Share Document