Decision on oil and gas exploration in an Arctic area: Case study from the Norwegian Barents Sea

2009 ◽  
Vol 47 (6) ◽  
pp. 832-842 ◽  
Author(s):  
Jon Rytter Hasle ◽  
Urban Kjellén ◽  
Ole Haugerud
2021 ◽  
pp. 1-45
Author(s):  
Qin Su ◽  
Huahui Zeng ◽  
Yancan Tian ◽  
HaiLiang Li ◽  
Lei Lyu ◽  
...  

Seismic processing and interpretation techniques provide important tools for the oil and gas exploration of the Songliao Basin in eastern China, which is dominated by terrestrial facies. In the Songliao Basin, a large number of thin-sand reservoirs are widely distributed, which are the primary targets of potential oil and gas exploration and exploitation. An important job of the exploration in the Songliao Basin is to accurately describe the distribution of these thin-sand belts and the sand-body shapes. However, the thickness of these thin-sand reservoirs are generally below the resolution of the conventional seismic processing. Most of the reservoirs are thin-interbeds of sand and mudstones with strong vertical and lateral variations. This makes it difficult to accurately predict the vertical and horizontal distribution of the thin-sand bodies using the conventional seismic processing and interpretation methods. Additionally, these lithologic traps are difficult to identify due to the complex controlling factor and distribution characteristics, and strong concealment. These challenges motivate us to improve the seismic data quality to help delineate the thin-sand reservoirs. In this paper, we use the broadband, wide-azimuth, and high-density integrated seismic exploration technique to help delineate the thin-reservoirs. We first use field single-point excitation and single-point receiver acquisition to obtain seismic data with wide frequency-bands, wide-azimuth angles, and high folds, which contain rich geological information. Next, we perform the near-surface Q-compensation, viscoelastic prestack time migration, seismic attributes, and seismic waveform indication inversion on the new acquired seismic data. The 3D case study indicates the benefits of improving the imaging of thin-sand body and the accuracy of inversion and reservoir characterization using the method in this paper.


Author(s):  
Ove T. Gudmestad ◽  
Daniel Karunakaran

With increased interests in oil and gas exploration in cold climate regions, it is not realistic that all construction activities can take place during the short summer and work will continue into the early fall and possibly later. The offshore contractors must, therefore, be ready to participate in construction work in these regions during an extended season, i.e. outside the summer season with milder weather conditions. It is also important that some key work-intensive activities (e.g. pipe laying) can start as early as possible in the season. This paper will discuss the challenges associated with construction work in cold climate regions with emphasis on the physical conditions, in particular with reference to Polar Low Pressures and the potential for icing, as well as the logistics of working long distances from established supply bases. Large uncertainties in weather forecasts call for proper management decisions accounting for the specifics of the area. Long periods of “waiting on weather” might result and management must have the patience to wait until safe operations can commence. Emphasis will be on the Barents Sea where recent hydrocarbon findings have proven very encouraging and where a huge area soon will be opened for exploration, following the agreement on the border between Norway and Russia, potentially calling for joint Norwegian–Russian construction projects (Bulakh et al., 2011).


2020 ◽  
Author(s):  
Nataliya Marchenko

<p>Knowledge of sea ice state (distribution, characteristics and movement) is interesting both from a practical point of view and for fundamental science. The western part of the Barents Sea is a region of increasing activity – oil and gas exploration may growth in addition to traditional fishing and transport. So theinformation is requested by industry and safety authorities.</p><p>Three last years (2017-19) the Arctic Technology Department of the University Centre in Svalbard (UNIS) performed expeditions on MS Polarsyssel in April in the sea ice-marginal zone of the Western Barents Sea, as a part of teaching and research program. In (Marchenko 2018), sea ice maps were compared with observed conditions. The distinguishing feature of ice in this region is the existence of relatively small ice floes (15-30 m wide) up to 5 m in thickness, containing consolidated ice ridges. In (Marchenko 2019) we described several such floes investigated by drilling, laser scanning and ice mechanical tests, on a testing station in the place with very shallow water (20 m) where ice concentrated. In this article, we summarise three years results with more attention for level ice floes and ice floe composition, continuing to feature ice condition in comparison with sea ice maps and satellite images.</p><p>These investigations provided a realistic characterization of sea ice in the region and are a valuable addition to the long-term studies of sea ice in the region performed by various institutions.</p>


Author(s):  
Isabel Jimenez Puente ◽  
Ove Tobias Gudmestad

This paper focuses on design aspects regarding breakwaters for cold climate terminals, in particular, the different types of berm breakwaters, their stability, armour mobility criteria and armour size. A methodology is analyzed in order to determine the mean weight of the heaviest armour class as a function of wave parameters such as the significant wave height and the mean wave period, both for non-reshaping and reshaping stable berm breakwaters. The influence of the wave period on the stone mass required will be of special importance in the discussion. This methodology will enable us to determine the required median armour weight for a specific wave parameter, being easily able to compare the feasibility of different concepts or availability of the required stone size at the location. As a case study, the breakwater selection for the Melkøya terminal in the Norwegian Barents Sea, is assessed through a comparison of the necessary armour unit masses for the different berm breakwaters. The armour mobility criteria currently established is reviewed and a recommendation for an updated criterion for the statically stable non-reshaped berm breakwater category is proposed.


2015 ◽  
Vol 2 (1) ◽  
pp. 52-57
Author(s):  
Payam Salimi

Geophysical methods widely used in oil and gas exploration. Modeling of gravity data is used extensively to illustrate the geometry and interface between the sediments and bedrock. Which can help the salt dome, anticline folds, dome-shaped uplift of the continental platform and reef masses to be identified. There are various methods to illustrate the bedrock topography, and we will describe one of these methods in present paper. Using the upward continuation, we extract the residual gravity anomaly which in fact shows the local effect of bedrock gravity on the observed gravity. Then, according to the Oldenburg - Parker method, the residual gravity data are inversed and finally the 3D geometry the bedrock is illustrated. It should be noted that some software's like Surfer and Excel are used in this research but the program main code is written using Matlab programming.


2013 ◽  
Vol 10 (7) ◽  
pp. 1830-1835 ◽  
Author(s):  
Dike U. Ike ◽  
Adoghe Anthony ◽  
Adoghe Anthony ◽  
Ademola Abdulkareem ◽  
Ademola Abdulkareem

Information and Communication Technology (ICT) is of great importance to almost all aspects of oil and gas operations, from upstream to downstream operations. ICTs help to optimize oil and gas processes and thus improves  the efficiency and viability of oil and gas operations. This paper presents the core areas of application of ICTs in the oil and gas industry using Nigeria’s oil and gas industry as a case study.


Author(s):  
Masoud Naseri ◽  
Javad Barabady

Oil and gas companies are expanding their operations in the remote Arctic offshore with harsh weather conditions such as the Barents Sea. One of the major challenges in reliability assessment of production plants operating in such areas is lack of life data accounting for the adverse effects of harsh operating conditions. The aim of this study is to develop an expert-based model to assess the reliability of oil and gas exploration and production plants operating in Arctic regions. Expert opinions are used to modify the life data available in normal-climate locations, which are considered as the base area, to account for the effects of operating conditions. The proposed model is illustrated by assessing the reliability of an oil processing train in the Western Barents Sea. Additionally, based on a criticality analysis, some design modifications are suggested to improve the reliability of the processing train.


Sign in / Sign up

Export Citation Format

Share Document