scholarly journals Short-range Li diffusion vs. long-range ionic conduction in nanocrystalline lithium peroxide Li2O2—the discharge product in lithium-air batteries

2014 ◽  
Vol 7 (8) ◽  
pp. 2739-2752 ◽  
Author(s):  
A. Dunst ◽  
V. Epp ◽  
I. Hanzu ◽  
S. A. Freunberger ◽  
M. Wilkening

Conductivity spectroscopy and 7Li spin-locking NMR relaxometry reveal enhanced ion dynamics in nanocrystalline Li2O2 prepared by high-energy ball milling.

2001 ◽  
Vol 676 ◽  
Author(s):  
Paul Heitjans ◽  
Sylvio Indris

ABSTRACTDiffusion and ionic conduction in nanocrystalline ceramics, both monophase and composite, was studied by NMR relaxation and NMR lineshape as well as impedance spectroscopy. Measurements were mainly done on Li ion conductors prepared by high-energy ball milling. It was possible to discriminate between mobile ions in the interfacial regions and immobile ions in the grains. In general the diffusivity and conductivity are enhanced in the nanocrystalline monophase system as compared to the microcrystalline one, e. g. by about four orders of magnitude in the case of CaF2. An exception is, e. g., Li2O where the nano- and microcrystalline forms have similar conductivities. However, when the nanocrystalline insulator B2O3 is added to nanocrystalline Li2O the conductivity of the composite increases whereas it decreases in the corresponding microcrystalline system.


Author(s):  
Martin Wilkening ◽  
Andre Düvel ◽  
Florian Preishuber-Pflügl ◽  
Klebson da Silva ◽  
Stefan Breuer ◽  
...  

AbstractIn many cases, limitations in conventional synthesis routes hamper the accessibility to materials with properties that have been predicted by theory. For instance, metastable compounds with local non-equilibrium structures can hardly be accessed by solid-state preparation techniques often requiring high synthesis temperatures. Also other ways of preparation lead to the thermodynamically stable rather than metastable products. Fortunately, such hurdles can be overcome by mechanochemical synthesis. Mechanical treatment of two or three starting materials in high-energy ball mills enables the synthesis of not only new, metastable compounds but also of nanocrystalline materials with unusual or enhanced properties such as ion transport. In this short review we report about local structures and ion transport of oxides and fluorides mechanochemically prepared by high-energy ball-milling.


2009 ◽  
Vol 283-286 ◽  
pp. 705-715 ◽  
Author(s):  
Paul Heitjans ◽  
Martin Wilkening

Materials with an average particle size of less than about 50 nm often show new or at least enhanced physical properties. In many cases nanocrystalline ionic conductors exhibit a high increase of cation, e. g. Li+, or anion, e. g. F−, diffusivity. In the present contribution we review recent studies on ion dynamics in nanocrystalline ion conductors, both single-phase systems and composites, being prepared by high-energy ball milling. These include, e.g., LiTaO3, Li2O:Al2O3, LiF:Al2O3, BaF2, CaF2, BaF2:CaF2 and (BaF2:CaF2):Al2O3. Dynamic properties were probed by 7Li and/or 19F NMR line shape and relaxation as well as ion conductivity measurements.


2014 ◽  
Vol 16 (20) ◽  
pp. 9580-9590 ◽  
Author(s):  
F. Preishuber-Pflügl ◽  
P. Bottke ◽  
V. Pregartner ◽  
B. Bitschnau ◽  
M. Wilkening

19F NMR relaxometry and conductivity spectroscopy precisely track the defect-mediated short-range and long-range anion migration pathways in nanocrystalline Ba0.6La0.4F2.4.


Author(s):  
Stefan Breuer ◽  
Bernhard Stanje ◽  
Veronika Pregartner ◽  
Sarah Lunghammer ◽  
Ilie Hanzu ◽  
...  

Nanostructured materials have already become an integral part of our daily life. In many applications ion mobility decisively affects the performance of, e.g., batteries and sensors. Nanocrystalline ceramics often exhibit enhanced transport properties due to their heterogeneous structure showing crystalline (defect-rich) grains and disordered interfacial regions. In particular, anion conductivity in nonstructural binary fluorides easily exceeds that of their coarse-grained counterparts. To further increase ion dynamics aliovalent substitution is a practical method to influence the number of (i) defect sites and (ii) the charge carrier density. Here, we used high energy-ball milling to incorporate Y3+ ions into the cubic structure of SrF2. As compared to pure nanocrystalline SrF2 the ionic conductivity of Sr1-xYxF2+x with x = 0.3 increased by 4 orders of magnitude reaching 0.8 x 10 -5 S/cm-1 at 450 K. We discuss the effect of YF3 incorporation on conductivities isotherms determined by both activation energies and Arrhenius pre-factors. The enhancement seen is explained by size mismatch of the cations involved, which are forced to form a cubic crystal structure with extra F anions if x is kept smaller than 0.5


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2332
Author(s):  
Ahmad Mamoun Khamis ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Ebenezer Ekow Mensah ◽  
Ibrahim Abubakar Alhaji

The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite (Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10−6/°C to 39.84×10−6/°C when the filler loading increased to 25 wt %. The real (ε′) and imaginary (ε″) parts of permittivity increased with the rFe2O3 loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1−j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Özge Balcı ◽  
Merve Buldu ◽  
Ameen Uddin Ammar ◽  
Kamil Kiraz ◽  
Mehmet Somer ◽  
...  

AbstractBoron carbide powders were synthesized by mechanically activated annealing process using anhydrous boron oxide (B2O3) and varying carbon (C) sources such as graphite and activated carbon: The precursors were mechanically activated for different times in a high energy ball mill and reacted in an induction furnace. According to the Raman analyses of the carbon sources, the I(D)/I(G) ratio increased from ~ 0.25 to ~ 0.99, as the carbon material changed from graphite to active carbon, indicating the highly defected and disordered structure of active carbon. Complementary advanced EPR analysis of defect centers in B4C revealed that the intrinsic defects play a major role in the electrochemical performance of the supercapacitor device once they have an electrode component made of bare B4C. Depending on the starting material and synthesis conditions the conductivity, energy, and power density, as well as capacity, can be controlled hence high-performance supercapacitor devices can be produced.


Sign in / Sign up

Export Citation Format

Share Document