Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China

2010 ◽  
Vol 106 (2) ◽  
pp. 268-274 ◽  
Author(s):  
Zhongpei Li ◽  
Ming Liu ◽  
Xiaochen Wu ◽  
Fengxiang Han ◽  
Taolin Zhang
Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 13 ◽  
Author(s):  
Fiona A. Robertson ◽  
Peter J. Thorburn

The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).


1995 ◽  
Vol 35 (7) ◽  
pp. 923 ◽  
Author(s):  
NA Fettell ◽  
HS Gill

Differences in soil organic carbon (C), total nitrogen (N), and pH resulting from 14 and 15 years of different tillage, stubble, and fertiliser N management practices were measured for a red-brown earth at Condobolin in western New South Wales. The 5 main treatments comprised stubble burning or retention in factorial combination with cultivation and direct drilling, and stubble incorporation combined with cultivation. Two rates of N fertiliser (0 and 40 or 50 kg/ha) were applied annually, and wheat was grown each year. There were no significant differences between tillage and stubble treatments for soil organic C, total N, or pH. Fertiliser N application caused small but significant increases in organic C and total N but decreased the pH of the surface 2.5 cm of soil by 0.4-0.5 units compared with the nil fertiliser rate. The study indicates that direct drilling and stubble retention with continuous wheat have had little long-term effect on soil organic C and total N in this low rainfall environment.


Soil Research ◽  
1993 ◽  
Vol 31 (4) ◽  
pp. 481 ◽  
Author(s):  
MR Carter ◽  
WJ Parton ◽  
IC Rowland ◽  
JE Schultz ◽  
GR Steed

Maintenance and improvement of soil organic matter levels is an important concern in dryland farming systems of temperate regions. The Century soil organic matter model was used to simulate changes in soil organic C and total N under long-term wheat (Triticum aestivum L.) and pasture rotations at five sites in southern Australia. Average declines in soil organic C and total N of 14 and 10%, respectively, in continuous and wheat-fallow systems over a 10 to 20 year period were closely simulated by the model at each site. Additions of N fertilizer (80 kg N ha-1), which prevented soil organic matter decline in continuous wheat systems, was also well represented by the model. Trends in soil organic matter under long-term legume pasture were not adequately simulated by the model, probably due to the 'annual' nature of subterranean clover (Trifolium subterranean L.) in dry seasons and subsequent changes in the ratio of live to dead plant biomass and shoot to root ratios. Overall, the study emphasizes the importance of adequate total plant C production to prevent a decline in soil organic C.


2001 ◽  
Vol 81 (3) ◽  
pp. 349-355 ◽  
Author(s):  
D. F. E. McArthur ◽  
P M Huang ◽  
L M Kozak

Research has suggested a link between the bioavailability of soil Cd and total soil organic matter. However, some research suggested a negative relationship between total soil organic matter and bioavailable soil Cd while other research suggested a positive relationship. This study investigated the relationship between soil Cd and both the quantity and quality of soil organic matter as influenced by long-term cultivation. Two Orthic Chernozemic surface soil samples, one from a virgin prairie and the other from an adjacent cultivated prairie, were collected from each of 12 different sites throughout southern Saskatchewan, Canada. The samples were analyzed for total organic C, total Cd, Cd availability index (CAI), and pH. The nature of the soil organic matter was investigated with 13C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy (13C CPMAS NMR). The total soil Cd, CAI, and total soil organic C of the cultivated soils were significantly lower than those of the virgin soils whereas the opposite trend was observed for the soil pH and the aromaticity of the organic C. The reduced CAI in the cultivated soils was related to the increase in both the soil pH and the aromaticity of the organic C. No relationship was found between the CAI and the soil organic C content, but a significant positive correlation was found between total organic C and total Cd in both the virgin and the cultivated soils. As well, a significant positive correlation was found between the fraction of total Cd removed from the soil after long-term cultivation and the corresponding fraction of organic C removed. Key words: Long-term cultivation, soil organic matter, 13C CPMAS NMR, cadmium


2001 ◽  
Vol 31 (12) ◽  
pp. 2225-2236 ◽  
Author(s):  
Peter S Homann ◽  
Bruce A Caldwell ◽  
H N Chappell ◽  
Phillip Sollins ◽  
Chris W Swanston

Chemical and microbial soil properties were assessed in paired unfertilized and urea fertilized (>89 g N·m–2) plots in 13 second-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands distributed throughout western Washington and Oregon. A decade following the termination of fertilization, fertilized plots averaged 28% higher total N in the O layer than unfertilized plots, 24% higher total N in surface (0–5 cm) mineral soil, and up to four times the amount of extractable ammonium and nitrate. Decreased pH (0.2 pH units) caused by fertilization may have been due to nitrification or enhanced cation uptake. In some soil layers, fertilization decreased cellulase activity and soil respiration but increased wood decomposition. There was no effect of fertilization on concentrations of light and heavy fractions, labile carbohydrates, and phosphatase and xylanase activities. No increase in soil organic C was detected, although variability precluded observing an increase of less than ~15%. Lack of a regionwide fertilization influence on soil organic C contrasts with several site-specific forest and agricultural studies that have shown C increases resulting from fertilization. Overall, the results indicate a substantial residual influence on soil N a decade after urea fertilization but much more limited influence on soil C processes and pools.


Soil Research ◽  
2004 ◽  
Vol 42 (8) ◽  
pp. 875 ◽  
Author(s):  
W. J. Wang ◽  
R. C. Dalal ◽  
P. W. Moody

Abstract Agricultural soils play an important role in the global carbon (C) cycling and can act as a significant C sink if managed properly. The long-term (33 years) effects of no till (NT) v. conventional till (CT), stubble retention (SR) v. stubble burning (SB), and N fertiliser application (NF) v. nil N fertilisation (N0) on soil organic C sequestration, and their seasonal variations during the fallow period, were studied in a winter cereal–summer fallow cropping system under semi-arid subtropical climate in Queensland, Australia. The function of different density fractions of soil organic C in determining total organic C (TOC) dynamics and sequestration was investigated. Significant effect of NT, SR, or NF on soil organic C level was observed only in the top 10 cm soil and when they were practiced together, with the TOC contents being 1.1 to 3.4 t/ha higher under NT + NF + SR than under other treatments. There were significant seasonal fluctuations in TOC contents at different stages of the fallow period, and the lowest levels of TOC and treatment effects were observed in the late fallow period. Density fractionation of soil organic C showed that light fraction C (<1.6 g/cm3) declined rapidly during the fallow period and did not accumulate substantially in soil. TOC dynamics, either as a consequence of seasonal variations or as a long-term response to different farming practices, were predominantly controlled by the changes in the heavy fraction C (>1.6 g/cm3).


Sign in / Sign up

Export Citation Format

Share Document