Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China

2012 ◽  
Vol 124 ◽  
pp. 196-202 ◽  
Author(s):  
Shixiu Zhang ◽  
Qi Li ◽  
Xiaoping Zhang ◽  
Kai Wei ◽  
Lijun Chen ◽  
...  
2021 ◽  
Vol 13 (17) ◽  
pp. 9563
Author(s):  
Yan Qu ◽  
Chulin Pan ◽  
Hongpeng Guo

Taking the conservation tillage influences of black soil in Northeast China as the research object, the paper is written according to the advice of relevant experts and technicians in Northeast China, the study also calculates the weight of each influencing factor through the Delphi and Analytic Hierarchy Process (AHP) method. Then, the significance of the factors affecting the benefit of conservation tillage is analyzed. The results show that, based on the comprehensive analysis, it is concluded that the economic factor is the primary factor affecting the benefit of black soil conservation tillage in Northeast China. Among the twelve influencing factors, eight of them have a significant impact on the development of conservation tillage benefits on black soil in Northeast China. Such as the degree of government subsidy; the adaptability of agricultural machinery; the input of new technology; relevant policies, laws and regulations; the quality of conservation tillage; the income of agricultural machinery farmers; practical application capacity; government publicity. Therefore, in the process of implementing the black soil conservation tillage, we should focus on these influencing factors, which will effectively promote the sustainable development of agriculture in Northeast China.


SOIL ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 71-82
Author(s):  
Shixiu Zhang ◽  
Liang Chang ◽  
Neil B. McLaughlin ◽  
Shuyan Cui ◽  
Haitao Wu ◽  
...  

Abstract. Long-term (10 years) application of conservation tillage following conversion from conventional tillage (CT) can achieve a new equilibrium in the soil environment, which is vital to reverse soil biodiversity declines and fulfil the goal of maintaining agroecosystem sustainability. However, in such a situation, how the soil community regulates nutrient cycling impacting crop yield is not well documented. Therefore, the relations between mineralized nitrogen (N) delivered by soil food web and soybean (Glycine max Merr.) yield were investigated after 14 years application of CT, reduced tillage (RT) and no tillage (NT) in a black soil (Typic Hapludoll) of Northeast China. We hypothesized that soil mineralizable N would increase with the complexity of the soil food web, and that the trophic groups involved in associating N mineralization with crop yield will vary with soil depth in the conservation tillage practice. During the soybean growing season, soil organisms, including bacteria, fungi, nematodes, mites and collembolans, were extracted and identified monthly from 0–5 and 5–15 cm soil depths to estimate the complexity of the food web indicated by the species richness and connectance indices, and to simulate the mineralized N using energetic food web modelling. The species richness and connectance of the food web at both soil depths were significantly affected by tillage practices, and their values decreased of the order of NT > RT > CT. A similar trend was also revealed for the simulated N mineralization, that is, the mineralized N released either from the functional feeding guilds or from the energy pathways of the food web were greater in RT and NT than in CT at both soil depths. Multiple linear regression analysis showed that soil organisms involved in coupling the mineralized N with soybean yield were different at different soil depths, in which fungal and root pathways at 0–5 cm and bacterial pathway at 5–15 cm were the driving factors for the supply of mineralized N to soybean in NT and RT soils. These results support our hypothesis and highlight the essential role of soil food web complexity in coupling N mineralization and crop yield after long-term application of conservation tillage. Additionally, the current modelling work provides basic hypotheses for future studies to test the impact of soil biodiversity or specific functional guilds on the fate of N in agro-ecosystems.


2016 ◽  
Vol 154 (8) ◽  
pp. 1425-1436 ◽  
Author(s):  
A. Z. LIANG ◽  
X. M. YANG ◽  
X. P. ZHANG ◽  
X. W. CHEN ◽  
N. B. MCLAUGHLIN ◽  
...  

SUMMARYBiased assessment of tillage impacts on soil organic carbon (SOC) sequestration are often associated with a lack of information on the initial level of SOC stocks. The present study reported the changes in SOC concentrations and stocks following 10-year different tillage practices relative to the initial SOC levels. The tillage trial included no tillage (NT), ridge tillage (RT) and mouldboard plough (MP) on a Black soil (Hapludolls) in Northeast China. Results showed that tillage, soil depth and time significantly affected SOC concentration and SOC stock. Tillage and crop residue retention had great impacts on the SOC concentrations in the top 0·1 m layer. Compared with MP and NT, RT resulted in higher SOC concentration and SOC stock in the plough layer (0–0·2 m), which became more obvious with time. The soil under NT and RT had higher stratification ratios (SR) of SOC (SR, the ratio of SOC concentration in 0–0·05 m to that in 0·1–0·2 m) than under MP. Significant positive and nearly identical linear relationships between the SR of SOC and the duration of tillage practices occurred for both NT and RT soils; the increased SR in NT resulted from both SOC increase in surface and SOC decrease in subsurface soils, but in RT, the increased SR was only from a substantial SOC increase in surface soil. Accordingly, the present study highlights that RT was more helpful than NT in carbon sequestration for the studied Black soil in Northeast China.


2015 ◽  
Vol 154 ◽  
pp. 84-90 ◽  
Author(s):  
Shixiu Zhang ◽  
Xuewen Chen ◽  
Shuxia Jia ◽  
Aizhen Liang ◽  
Xiaoping Zhang ◽  
...  

2015 ◽  
Vol 149 ◽  
pp. 46-52 ◽  
Author(s):  
Shixiu Zhang ◽  
Qi Li ◽  
Ying Lü ◽  
Xiaoming Sun ◽  
Shuxia Jia ◽  
...  

2021 ◽  
Vol 10 (5) ◽  
pp. 348
Author(s):  
Zhenbo Du ◽  
Bingbo Gao ◽  
Cong Ou ◽  
Zhenrong Du ◽  
Jianyu Yang ◽  
...  

Black soil is fertile, abundant with organic matter (OM) and is exceptional for farming. The black soil zone in northeast China is the third-largest black soil zone globally and produces a quarter of China’s commodity grain. However, the soil organic matter (SOM) in this zone is declining, and the quality of cultivated land is falling off rapidly due to overexploitation and unsustainable management practices. To help develop an integrated protection strategy for black soil, this study aimed to identify the primary factors contributing to SOM degradation. The geographic detector, which can detect both linear and nonlinear relationships and the interactions based on spatial heterogeneous patterns, was used to quantitatively analyze the natural and anthropogenic factors affecting SOM concentration in northeast China. In descending order, the nine factors affecting SOM are temperature, gross domestic product (GDP), elevation, population, soil type, precipitation, soil erosion, land use, and geomorphology. The influence of all factors is significant, and the interaction of any two factors enhances their impact. The SOM concentration decreases with increased temperature, population, soil erosion, elevation and terrain undulation. SOM rises with increased precipitation, initially decreases with increasing GDP but then increases, and varies by soil type and land use. Conclusions about detailed impacts are presented in this paper. For example, wind erosion has a more significant effect than water erosion, and irrigated land has a lower SOM content than dry land. Based on the study results, protection measures, including conservation tillage, farmland shelterbelts, cross-slope ridges, terraces, and rainfed farming are recommended. The conversion of high-quality farmland to non-farm uses should be prohibited.


2017 ◽  
Vol 9 (2) ◽  
pp. 300 ◽  
Author(s):  
Shuhan Liu ◽  
Dongyan Wang ◽  
Hong Li ◽  
Wenbo Li ◽  
Qing Wang

2021 ◽  
Vol 213 ◽  
pp. 105157
Author(s):  
Jie Zhang ◽  
Dan Wei ◽  
Baoku Zhou ◽  
Lijuan Zhang ◽  
Xiaoyu Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document