Effects of soil erosion and land use on spatial distribution of soil total phosphorus in a small watershed on the Loess Plateau, China

2018 ◽  
Vol 184 ◽  
pp. 142-152 ◽  
Author(s):  
Yuting Cheng ◽  
Peng Li ◽  
Guoce Xu ◽  
Zhanbin Li ◽  
Haidong Gao ◽  
...  
Author(s):  
Hui Wei ◽  
Wenwu Zhao ◽  
Han Wang

Large-scale vegetation restoration greatly changed the soil erosion environment in the Loess Plateau since the implementation of the “Grain for Green Project” (GGP) in 1999. Evaluating the effects of vegetation restoration on soil erosion is significant to local soil and water conservation and vegetation construction. Taking the Ansai Watershed as the case area, this study calculated the soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration, using the Chinese Soil Loess Equation (CSLE), based on rainfall and soil data, remote sensing images and socio-economic data. The effect of vegetation restoration on soil erosion was evaluated by comparing the average annual soil erosion modulus under two scenarios among 16 years. The results showed: (1) vegetation restoration significantly changed the local land use, characterized by the conversion of farmland to grassland, arboreal land, and shrub land. From 2000 to 2015, the area of arboreal land, shrub land, and grassland increased from 19.46 km2, 19.43 km2, and 719.49 km2 to 99.26 km2, 75.97 km2, and 1084.24 km2; while the farmland area decreased from 547.90 km2 to 34.35 km2; (2) the average annual soil erosion modulus from 2000 to 2015 under the initial and current scenarios of vegetation restoration was 114.44 t/(hm²·a) and 78.42 t/(hm²·a), respectively, with an average annual reduction of 4.81 × 106 t of soil erosion amount thanks to the vegetation restoration; (3) the dominant soil erosion intensity changed from “severe and light erosion” to “moderate and light erosion”, vegetation restoration greatly improved the soil erosion environment in the study area; (4) areas with increased erosion and decreased erosion were alternately distributed, accounting for 48% and 52% of the total land area, and mainly distributed in the northwest and southeast of the watershed, respectively. Irrational land use changes in local areas (such as the conversion of farmland and grassland into construction land, etc.) and the ineffective implementation of vegetation restoration are the main reasons leading to the existence of areas with increased erosion.


2007 ◽  
Vol 31 (4) ◽  
pp. 389-403 ◽  
Author(s):  
Liding Chen ◽  
Wei Wei ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau, China, has long been suffering from serious soil erosion. About 2000 years ago, larger areas were used for grain production and soil erosion was thus becoming severe with increase in human activity. Severe soil and water loss led to widespread land degradation. During the past decades, great efforts were made in vegetation restoration to reduce soil erosion. However, the efficiency of vegetation restoration was not as satisfactory as expected due to water shortage. China initiated another state-funded scheme, the `Grain-for-Green' project in 1999, on the Loess Plateau to reduce soil erosion and improve land quality. However, the control of soil erosion effectively by land-use modification raised problems. In this paper, the lessons and experiences regarding soil and water conservation in the Loess Plateau in the past decades are analysed first. Urgent problems are then elaborated, such as the contradiction between land resource and human population, shortage of water both in amount and tempospatial distribution for vegetation growth, weak awareness of the problems of soil conservation by local officials, and poor public participation in soil and water conservation. Finally, suggestions regarding soil and water conservation in the Loess Plateau are given. In order to control soil erosion and improve vegetation, a scientific and detailed land-use plan for the Loess Plateau has to be made, in the first instance, and then planning for wise use of water resources should be undertaken to control mass movement effectively and to improve land productivity. Methods of improving public awareness of environmental conservation and public involvement in vegetation rehabilitation are also important.


CATENA ◽  
2014 ◽  
Vol 121 ◽  
pp. 151-163 ◽  
Author(s):  
Wenyi Sun ◽  
Quanqin Shao ◽  
Jiyuan Liu ◽  
Jun Zhai

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 352 ◽  
Author(s):  
Ning Wang ◽  
Zhihong Yao ◽  
Wanqing Liu ◽  
Xizhi Lv ◽  
Mengdie Ma

Runoff erosion capacity has significant effects on the spatial distribution of soil erosion and soil losses. But few studies have been conducted to evaluate these effects in the Loess Plateau. In this study, an adjusted SWAT model was used to simulate the hydrological process of the Xihe River basin from 1993 to 2012. The spatial variabilities between runoff erosion capacity and underlying surface factors were analyzed by combining spatial gradient analysis and GWR (Geographically Weighted Regression) analysis. The results show that the spatial distribution of runoff erosion capacity in the studying area has the following characteristics: strong in the north, weak in the south, strong in the west, and weak in the east. Topographic factors are the dominant factors of runoff erosion in the upper reaches of the basin. Runoff erosion capacity becomes stronger with the increase of altitude and gradient. In the middle reaches area, the land with low vegetation coverage, as well as arable land, show strong runoff erosion ability. In the downstream areas, the runoff erosion capacity is weak because of better underlying surface conditions. Compared with topographic and vegetation factors, soil factors have less impact on runoff erosion. The red clay and mountain soil in this region have stronger runoff erosion capacities compared with other types of soils, with average runoff modulus of 1.79 × 10−3 m3/s·km2 and 1.68 × 10−3 m3/s·km2, respectively, and runoff erosion power of 0.48 × 10−4 m4/s·km2 and 0.34 × 10−4 m4/s·km2, respectively. The runoff erosion capacity of the alluvial soil is weak, with an average runoff modulus of 0.96 × 10−3 m3/s·km2 and average erosion power of 0.198 × 10−4 m4/s·km2. This study illustrates the spatial distribution characteristics and influencing factors of hydraulic erosion in the Xihe River Basin from the perspective of energy. It contributes to the purposeful utilization of water and soil resources in the Xihe River Basin and provides a theoretical support for controlling the soil erosion in the Hilly-gully region of the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document