scholarly journals Nde1 is a Rab9 effector for loading late endosomes to cytoplasmic dynein motor complex

Structure ◽  
2021 ◽  
Author(s):  
Yifan Zhang ◽  
Ziyue Chen ◽  
Fang Wang ◽  
Honghua Sun ◽  
Xueliang Zhu ◽  
...  
2019 ◽  
Author(s):  
Marco Terenzio ◽  
Agostina Di Pizio ◽  
Ida Rishal ◽  
Letizia Marvaldi ◽  
Pierluigi Di Matteo ◽  
...  

ABSTRACTThe cytoplasmic dynein motor complex transports essential signals and organelles from the cell periphery to perinuclear region, hence is critical for the survival and function of highly polarized cells such as neurons. Dynein Light Chain Roadblock-Type 1 (DYNLRB1) is thought to be an accessory subunit required for specific cargos, but here we show that it is essential for general dynein-mediated transport and sensory neuron survival. Homozygous Dynlrb1 null mice are not viable and die during early embryonic development. Furthermore, heterozygous or adult knockdown animals display reduced neuronal growth, and selective depletion of Dynlrb1 in proprioceptive neurons compromises their survival. Conditional depletion of Dynlrb1 in sensory neurons causes deficits in several signaling pathways, including β-catenin subcellular localization, and a severe impairment in the axonal transport of both lysosomes and retrograde signaling endosomes. Hence, DYNLRB1 is an essential component of the dynein complex.


2011 ◽  
Vol 22 (15) ◽  
pp. 2690-2701 ◽  
Author(s):  
Melissa D. Stuchell-Brereton ◽  
Amanda Siglin ◽  
Jun Li ◽  
Jeffrey K. Moore ◽  
Shubbir Ahmed ◽  
...  

Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.


2020 ◽  
Author(s):  
Gina A. Monzon ◽  
Lara Scharrel ◽  
Ashwin DSouza ◽  
Ludger Santen ◽  
Stefan Diez

ABSTRACTThe maintenance of intracellular processes like organelle transport and cell division depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameter using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors have only little effect.


Bone ◽  
2009 ◽  
Vol 44 ◽  
pp. S160 ◽  
Author(s):  
N.J. Pavlos ◽  
J. Xu ◽  
H. Feng ◽  
P. Ng ◽  
T. Cheng ◽  
...  

2009 ◽  
Vol 185 (7) ◽  
pp. 1209-1225 ◽  
Author(s):  
Nuno Rocha ◽  
Coenraad Kuijl ◽  
Rik van der Kant ◽  
Lennert Janssen ◽  
Diane Houben ◽  
...  

Late endosomes (LEs) have characteristic intracellular distributions determined by their interactions with various motor proteins. Motor proteins associated to the dynactin subunit p150Glued bind to LEs via the Rab7 effector Rab7-interacting lysosomal protein (RILP) in association with the oxysterol-binding protein ORP1L. We found that cholesterol levels in LEs are sensed by ORP1L and are lower in peripheral vesicles. Under low cholesterol conditions, ORP1L conformation induces the formation of endoplasmic reticulum (ER)–LE membrane contact sites. At these sites, the ER protein VAP (VAMP [vesicle-associated membrane protein]-associated ER protein) can interact in trans with the Rab7–RILP complex to remove p150Glued and associated motors. LEs then move to the microtubule plus end. Under high cholesterol conditions, as in Niemann-Pick type C disease, this process is prevented, and LEs accumulate at the microtubule minus end as the result of dynein motor activity. These data explain how the ER and cholesterol control the association of LEs with motor proteins and their positioning in cells.


Development ◽  
1997 ◽  
Vol 124 (12) ◽  
pp. 2409-2419 ◽  
Author(s):  
M. McGrail ◽  
T.S. Hays

During animal development cellular differentiation is often preceded by an asymmetric cell division whose polarity is determined by the orientation of the mitotic spindle. In the fruit fly, Drosophila melanogaster, the oocyte differentiates in a 16-cell syncytium that arises from a cystoblast which undergoes 4 synchronous divisions with incomplete cytokinesis. During these divisions, spindle orientation is highly ordered and is thought to impart a polarity to the cyst that is necessary for the subsequent differentiation of the oocyte. Using mutations in the Drosophila cytoplasmic dynein heavy chain gene, Dhc64C, we show that cytoplasmic dynein is required at two stages of oogenesis. Early in oogenesis, dynein mutations disrupt spindle orientation in dividing cysts and block oocyte determination. The localization of dynein in mitotic cysts suggests spindle orientation is mediated by the microtubule motor cytoplasmic dynein. Later in oogenesis, dynein function is necessary for proper differentiation, but does not appear to participate in morphogen localization within the oocyte. These results provide evidence for a novel developmental role for the cytoplasmic dynein motor in cellular determination and differentiation.


1999 ◽  
Vol 147 (2) ◽  
pp. 321-334 ◽  
Author(s):  
N.J. Quintyne ◽  
S.R. Gill ◽  
D.M. Eckley ◽  
C.L. Crego ◽  
D.A. Compton ◽  
...  

The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein–dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindles. In interphase cells, perturbation of the dynein–dynactin complex is correlated with an inhibition of ER-to-Golgi movement and reorganization of the Golgi apparatus and the endosome–lysosome system, but the effects on microtubule organization have not previously been defined. To explore this question, we overexpressed a variety of dynactin subunits in cultured fibroblasts. Subunits implicated in dynein binding have effects on both microtubule organization and centrosome integrity. Microtubules are reorganized into unfocused arrays. The pericentriolar components, γ tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists. Microtubule nucleation from centrosomes proceeds relatively normally, but microtubules become disorganized soon thereafter. Overexpression of some, but not all, dynactin subunits also affects endomembrane localization. These data indicate that dynein and dynactin play important roles in microtubule organization at centrosomes in fibroblastic cells and provide new insights into dynactin–cargo interactions.


2013 ◽  
Vol 201 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Jonne A. Raaijmakers ◽  
Marvin E. Tanenbaum ◽  
René H. Medema

Cytoplasmic dynein is a large minus end–directed motor complex with multiple functions during cell division. The dynein complex interacts with various adaptor proteins, including the dynactin complex, thought to be critical for most dynein functions. Specific activities have been linked to several subunits and adaptors, but the function of the majority of components has remained elusive. Here, we systematically address the function of each dynein–dynactin subunit and adaptor protein in mitosis. We identify the essential components that are required for all mitotic functions of dynein. Moreover, we find specific dynein recruitment factors, and adaptors, like Nde1/L1, required for activation, but largely dispensable for dynein localization. Most surprisingly, our data show that dynactin is not required for dynein-dependent spindle organization, but acts as a dynein recruitment factor. These results provide a comprehensive overview of the role of dynein subunits and adaptors in mitosis and reveal that dynein forms distinct complexes requiring specific recruiters and activators to promote orderly progression through mitosis.


2001 ◽  
Vol 12 (10) ◽  
pp. 2921-2933 ◽  
Author(s):  
John H. Yoder ◽  
Min Han

We describe phenotypic characterization of dli-1, the Caenorhabditis elegans homolog of cytoplasmic dynein light intermediate chain (LIC), a subunit of the cytoplasmic dynein motor complex. Animals homozygous for loss-of-function mutations indli-1 exhibit stochastic failed divisions in late larval cell lineages, resulting in zygotic sterility. dli-1 is required for dynein function during mitosis. Depletion of thedli-1 gene product through RNA-mediated gene interference (RNAi) reveals an early embryonic requirement. One-celldli-1(RNAi) embryos exhibit failed cell division attempts, resulting from a variety of mitotic defects. Specifically, pronuclear migration, centrosome separation, and centrosome association with the male pronuclear envelope are defective indli-1(RNAi) embryos. Meiotic spindle formation, however, is not affected in these embryos. DLI-1, like its vertebrate homologs, contains a putative nucleotide-binding domain similar to those found in the ATP-binding cassette transporter family of ATPases as well as other nucleotide-binding and -hydrolyzing proteins. Amino acid substitutions in a conserved lysine residue, known to be required for nucleotide binding, confers complete rescue in a dli-1mutant background, indicating this is not an essential domain for DLI-1 function.


2005 ◽  
Vol 16 (8) ◽  
pp. 3591-3605 ◽  
Author(s):  
Shihe Li ◽  
C. Elizabeth Oakley ◽  
Guifang Chen ◽  
Xiaoyan Han ◽  
Berl R. Oakley ◽  
...  

In Aspergillus nidulans, cytoplasmic dynein and NUDF/LIS1 are found at the spindle poles during mitosis, but they seem to be targeted to this location via different mechanisms. The spindle pole localization of cytoplasmic dynein requires the function of the anaphase-promoting complex (APC), whereas that of NUDF does not. Moreover, although NUDF's localization to the spindle poles does not require a fully functional dynein motor, the function of NUDF is important for cytoplasmic dynein's targeting to the spindle poles. Interestingly, a γ-tubulin mutation, mipAR63, nearly eliminates the localization of cytoplasmic dynein to the spindle poles, but it has no apparent effect on NUDF's spindle pole localization. Live cell analysis of the mipAR63 mutant revealed a defect in chromosome separation accompanied by unscheduled spindle elongation before the completion of anaphase A, suggesting that γ-tubulin may recruit regulatory proteins to the spindle poles for mitotic progression. In A. nidulans, dynein is not apparently required for mitotic progression. In the presence of a low amount of benomyl, a microtubule-depolymerizing agent, however, a dynein mutant diploid strain exhibits a more pronounced chromosome loss phenotype than the control, indicating that cytoplasmic dynein plays a role in chromosome segregation.


Sign in / Sign up

Export Citation Format

Share Document