scholarly journals Cytoplasmic Dynein's Mitotic Spindle Pole Localization Requires a Functional Anaphase-promoting Complex, γ-Tubulin, and NUDF/LIS1 in Aspergillus nidulans

2005 ◽  
Vol 16 (8) ◽  
pp. 3591-3605 ◽  
Author(s):  
Shihe Li ◽  
C. Elizabeth Oakley ◽  
Guifang Chen ◽  
Xiaoyan Han ◽  
Berl R. Oakley ◽  
...  

In Aspergillus nidulans, cytoplasmic dynein and NUDF/LIS1 are found at the spindle poles during mitosis, but they seem to be targeted to this location via different mechanisms. The spindle pole localization of cytoplasmic dynein requires the function of the anaphase-promoting complex (APC), whereas that of NUDF does not. Moreover, although NUDF's localization to the spindle poles does not require a fully functional dynein motor, the function of NUDF is important for cytoplasmic dynein's targeting to the spindle poles. Interestingly, a γ-tubulin mutation, mipAR63, nearly eliminates the localization of cytoplasmic dynein to the spindle poles, but it has no apparent effect on NUDF's spindle pole localization. Live cell analysis of the mipAR63 mutant revealed a defect in chromosome separation accompanied by unscheduled spindle elongation before the completion of anaphase A, suggesting that γ-tubulin may recruit regulatory proteins to the spindle poles for mitotic progression. In A. nidulans, dynein is not apparently required for mitotic progression. In the presence of a low amount of benomyl, a microtubule-depolymerizing agent, however, a dynein mutant diploid strain exhibits a more pronounced chromosome loss phenotype than the control, indicating that cytoplasmic dynein plays a role in chromosome segregation.

2011 ◽  
Vol 193 (7) ◽  
pp. 1229-1244 ◽  
Author(s):  
Marina L. Ellefson ◽  
Francis J. McNally

In animals, the female meiotic spindle is positioned at the egg cortex in a perpendicular orientation to facilitate the disposal of half of the chromosomes into a polar body. In Caenorhabditis elegans, the metaphase spindle lies parallel to the cortex, dynein is dispersed on the spindle, and the dynein activators ASPM-1 and LIN-5 are concentrated at spindle poles. Anaphase-promoting complex (APC) activation results in dynein accumulation at spindle poles and dynein-dependent rotation of one spindle pole to the cortex, resulting in perpendicular orientation. To test whether the APC initiates spindle rotation through cyclin B–CDK-1 inactivation, separase activation, or degradation of an unknown dynein inhibitor, CDK-1 was inhibited with purvalanol A in metaphase-I–arrested, APC-depleted embryos. CDK-1 inhibition resulted in the accumulation of dynein at spindle poles and dynein-dependent spindle rotation without chromosome separation. These results suggest that CDK-1 blocks rotation by inhibiting dynein association with microtubules and with LIN-5–ASPM-1 at meiotic spindle poles and that the APC promotes spindle rotation by inhibiting CDK-1.


2000 ◽  
Vol 149 (4) ◽  
pp. 851-862 ◽  
Author(s):  
Andreas Merdes ◽  
Rebecca Heald ◽  
Kumiko Samejima ◽  
William C. Earnshaw ◽  
Don W. Cleveland

NuMA is a large nuclear protein whose relocation to the spindle poles is required for bipolar mitotic spindle assembly. We show here that this process depends on directed NuMA transport toward microtubule minus ends powered by cytoplasmic dynein and its activator dynactin. Upon nuclear envelope breakdown, large cytoplasmic aggregates of green fluorescent protein (GFP)-tagged NuMA stream poleward along spindle fibers in association with the actin-related protein 1 (Arp1) protein of the dynactin complex and cytoplasmic dynein. Immunoprecipitations and gel filtration demonstrate the assembly of a reversible, mitosis-spe-cific complex of NuMA with dynein and dynactin. NuMA transport is required for spindle pole assembly and maintenance, since disruption of the dynactin complex (by increasing the amount of the dynamitin subunit) or dynein function (with an antibody) strongly inhibits NuMA translocation and accumulation and disrupts spindle pole assembly.


1993 ◽  
Vol 123 (2) ◽  
pp. 387-403 ◽  
Author(s):  
M T Brown ◽  
L Goetsch ◽  
L H Hartwell

The function of the essential MIF2 gene in the Saccharomyces cerevisiae cell cycle was examined by overepressing or creating a deficit of MIF2 gene product. When MIF2 was overexpressed, chromosomes missegregated during mitosis and cells accumulated in the G2 and M phases of the cell cycle. Temperature sensitive mutants isolated by in vitro mutagenesis delayed cell cycle progression when grown at the restrictive temperature, accumulated as large budded cells that had completed DNA replication but not chromosome segregation, and lost viability as they passed through mitosis. Mutant cells also showed increased levels of mitotic chromosome loss, supersensitivity to the microtubule destabilizing drug MBC, and morphologically aberrant spindles. mif2 mutant spindles arrested development immediately before anaphase spindle elongation, and then frequently broke apart into two disconnected short half spindles with misoriented spindle pole bodies. These findings indicate that MIF2 is required for structural integrity of the spindle during anaphase spindle elongation. The deduced Mif2 protein sequence shared no extensive homologies with previously identified proteins but did contain a short region of homology to a motif involved in binding AT rich DNA by the Drosophila D1 and mammalian HMGI chromosomal proteins.


2012 ◽  
Vol 287 (15) ◽  
pp. 11704-11716 ◽  
Author(s):  
Pei-Chi Yeh ◽  
Chang-Ching Yeh ◽  
Yi-Cheng Chen ◽  
Yue-Li Juang

The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301–340 and 439–480, designated as MAD1(301–340) and MAD1(439–480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301–340) and MAD1(439–480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC.


2021 ◽  
Author(s):  
Thomas Tischer ◽  
Jing Yang ◽  
David Barford

The control of protein abundance is a fundamental regulatory mechanism during mitosis. The anaphase promoting complex/cyclosome (APC/C) is the main protein ubiquitin ligase responsible for the temporal regulation of mitotic progression. It has been proposed that the APC/C might fulfil other functions including assembly of the mitotic spindle. Here, we show that the APC/C localizes to centrosomes, the organizers of the eukaryotic microtubule cytoskeleton, specifically during mitosis. Recruitment of the APC/C to spindle poles requires the centrosomal protein Cep152, and we identified Cep152 as both an APC/C interaction partner and as an APC/C substrate. Previous studies showed that Cep152 forms a complex with Cep57 and Cep63. The APC/C-mediated ubiquitination of Cep152 at the centrosome releases Cep57 from this inhibitory complex and enables its interaction with pericentrin, a critical step in promoting microtubule nucleation. Thus, our study extends the function of the APC/C from being a regulator of mitosis to also acting as a positive governor of spindle assembly. The APC/C thereby integrates control of these two important processes in a temporal manner.


1998 ◽  
Vol 111 (17) ◽  
pp. 2607-2614 ◽  
Author(s):  
S. Inoue ◽  
O.C. Yoder ◽  
B.G. Turgeon ◽  
J.R. Aist

An astral pulling force helps to elongate the mitotic spindle in the filamentous ascomycete, Nectria haematococca. Evidence is mounting that dynein is required for the formation of mitotic spindles and asters. Obviously, this would be an important mitotic function of dynein, since it would be a prerequisite for astral force to be applied to a spindle pole. Missing from the evidence for such a role of dynein in aster formation, however, has been a dynein mutant lacking mitotic asters. To determine whether or not cytoplasmic dynein is involved in mitotic aster formation in N. haematococca, a dynein-deficient mutant was made. Immunocytochemistry visualized few or no mitotic astral microtubules in the mutant cells, and studies of living cells confirmed the veracity of this result by revealing the absence of mitotic aster functions in vivo: intra-astral motility of membranous organelles was not apparent; the rate and extent of spindle elongation during anaphase B were reduced; and spindle pole body separation almost stopped when the anaphase B spindle in the mutant was cut by a laser microbeam, demonstrating unequivocally that no astral pulling force was present. These unique results not only provide a demonstration that cytoplasmic dynein is required for the formation of mitotic asters in N. haematococca; they also represent the first report of mitotic phenotypes in a dynein mutant of any filamentous fungus and the first cytoplasmic dynein mutant of any organism whose mitotic phenotypes demonstrate the requirement of cytoplasmic dynein for aster formation in vivo.


1986 ◽  
Vol 64 (1) ◽  
pp. 130-145 ◽  
Author(s):  
Timothy M. Bourett ◽  
David J. McLaughlin

Mitosis in clampless, dikaryotic hyphae of Helicobasidium mompa (Basidiomycota, Auriculariales sensu lato) was studied in apical and penultimate cells by correlating light microscopic and ultrastructural observations. Mitosis lasts about 10.5 min. In penultimate cells, mitosis occurs in the base of a branch whose initiation involves rupture of the wall. The extranuclear interphase spindle pole body contains two three-layered discs. Prophase is discerned by the polarization of the nucleus into a karyokinetic and a nucleolar region. During prometaphase, the spindle pole body discs move into the plane of the nuclear envelope where they occupy gaps. The spindle pole is enclosed by a cap of endoplasmic reticulum. At metaphase, nuclei lie side by side, the nucleolus resides in a nuclear evagination, and the spindle pole body discs are five layered. At anaphase, both chromatin to pole movement and extensive spindle elongation occur, astral microtubule populations reach a maximum, and multivesicular bodies aggregate at the spindle poles. Septa contain simple pores and form at the site previously occupied by the dividing nuclei. The results are compared with mitotic cycles in higher fungi and their evolutionary, phylogenetic, and functional significance is discussed.


2020 ◽  
Vol 219 (12) ◽  
Author(s):  
Brennan M. Danlasky ◽  
Michelle T. Panzica ◽  
Karen P. McNally ◽  
Elizabeth Vargas ◽  
Cynthia Bailey ◽  
...  

Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.


2000 ◽  
Vol 11 (1) ◽  
pp. 241-253 ◽  
Author(s):  
David J. Sharp ◽  
Heather M. Brown ◽  
Mijung Kwon ◽  
Gregory C. Rogers ◽  
Gina Holland ◽  
...  

It is well established that multiple microtubule-based motors contribute to the formation and function of the mitotic spindle, but how the activities of these motors interrelate remains unclear. Here we visualize spindle formation in living Drosophila embryos to show that spindle pole movements are directed by a temporally coordinated balance of forces generated by three mitotic motors, cytoplasmic dynein, KLP61F, and Ncd. Specifically, our findings suggest that dynein acts to move the poles apart throughout mitosis and that this activity is augmented by KLP61F after the fenestration of the nuclear envelope, a process analogous to nuclear envelope breakdown, which occurs at the onset of prometaphase. Conversely, we find that Ncd generates forces that pull the poles together between interphase and metaphase, antagonizing the activity of both dynein and KLP61F and serving as a brake for spindle assembly. During anaphase, however, Ncd appears to have no effect on spindle pole movements, suggesting that its activity is down-regulated at this time, allowing dynein and KLP61F to drive spindle elongation during anaphase B.


2007 ◽  
Vol 18 (7) ◽  
pp. 2656-2666 ◽  
Author(s):  
Yun Liang ◽  
Wei Yu ◽  
Yan Li ◽  
Lihou Yu ◽  
Qiangge Zhang ◽  
...  

The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly (∼78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor.


Sign in / Sign up

Export Citation Format

Share Document