scholarly journals A comparative study of high resolution transmission electron microscopy, atomic force microscopy and infrared spectroscopy for GaN thin films grown on sapphire by metalorganic chemical vapor deposition

2006 ◽  
Vol 200 (10) ◽  
pp. 3224-3229 ◽  
Author(s):  
Zhe Chuan Feng ◽  
Kun Li ◽  
Yun Tian Hou ◽  
Jie Zhao ◽  
W. Lu ◽  
...  
1997 ◽  
Vol 468 ◽  
Author(s):  
Jing-Hong Li ◽  
Olga M. Kryliouk ◽  
Paul H. Holloway ◽  
Timothy J. Anderson ◽  
Kevin S. Jones

ABSTRACTMicrostructures of GaN films grown on the LiGaO2 by metalorganic chemical vapor deposition (MOCVD) have been characterized by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). TEM and HRTEM results show that high quality single-crystal wurtzite GaN films have been deposited on the LiGaO2 and that the GaN film and the LiGaO2 have the following orientation relationship: (2110)(0002)GaN ̂ (002)LiGaO2 ^ 5–8°. A higher density of threading dislocations and stacking faults have been observed near the GáN/LiGaO2 interface, even though the lattice mismatch of GaN to LiGaO2 is only ∼1%. Threading dislocations with burgers vector b=<0001> and b=a/3<1120> are predominant in the GaN films. Also the GaN films contain some columnar inversion domain boundaries (IDBs). Both TEM and HRTEM results reveal that there is an unexpected amorphous or nano-crystalline inter-layer between the GaN and the LiGaO2 with a thickness of 50–100 nm.


1995 ◽  
Vol 403 ◽  
Author(s):  
G. Bai ◽  
S. Wittenbrock ◽  
V. Ochoa ◽  
R. Villasol ◽  
C. Chiang ◽  
...  

AbstractCu has two advantages over Al for sub-quarter micron interconnect application: (1) higher conductivity and (2) improved electromigration reliability. However, Cu diffuses quickly in SiO2and Si, and must be encapsulated. Polycrystalline films of Physical Vapor Deposition (PVD) Ta, W, Mo, TiN, and Metal-Organo Chemical Vapor Deposition (MOCVD) TiN and Ti-Si-N have been evaluated as Cu diffusion barriers using electrically biased-thermal-stressing tests. Barrier effectiveness of these thin films were correlated with their physical properties from Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Secondary Electron Microscopy (SEM), and Auger Electron Spectroscopy (AES) analysis. The barrier failure is dominated by “micro-defects” in the barrier film that serve as easy pathways for Cu diffusion. An ideal barrier system should be free of such micro-defects (e.g., amorphous Ti-Si-N and annealed Ta). The median-time-to-failure (MTTF) of a Ta barrier (30 nm) has been measured at different bias electrical fields and stressing temperatures, and the extrapolated MTTF of such a barrier is > 100 year at an operating condition of 200C and 0.1 MV/cm.


1996 ◽  
Vol 436 ◽  
Author(s):  
Cengiz S. Ozkan ◽  
William D. Nix ◽  
Huajian Gao

AbstractHeteroepitaxial Si1-xGex. thin films deposited on silicon substrates exhibit surface roughening via surface diffusion under the effect of a compressive stress which is caused by a lattice mismatch. In these films, surface roughening can take place in the form of ridges which can be aligned along <100> or <110> directions, depending on the film thickness. In this paper, we investigate this anisotropic dependence of surface roughening and present an analysis of it. We have studied the surface roughening behaviour of 18% Ge and 22% Ge thin films subjected to controlled annealing experiments. Transmission electron microscopy and atomic force microscopy have been used to study the morphology and microstructure of the surface ridges and the dislocations that form during annealing.


1992 ◽  
Vol 7 (8) ◽  
pp. 1993-2002 ◽  
Author(s):  
P. Lu ◽  
J. Zhao ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
G.A. Kulesha ◽  
...  

The microstructures of (A) near stoichiometric, (B) Y-rich, and (C) Y- and Cu-rich YBa2Cu3O7−x thin films have been studied by high-resolution transmission electron microscopy. The films were deposited on (100) LaAlO3 by plasma-enhanced metalorganic chemical vapor deposition. In near stoichiometric films, microstructural features similar to those of thin films deposited by other techniques have been observed. These features which include epitaxial growth with the c-axis perpendicular to the substrate, twin boundaries on (110) planes, and stacking faults on (100) and (001) planes were also present in the off-stoichiometric materials. In Y-rich thin films, yttria (Y2O3) precipitates with an average size of about 5 nm have been identified in the matrix. The precipitates are uniformly distributed, have a high density as large as 1024/m3, and are highly oriented with respect to the matrix. In Y- and Cu-rich thin films, CuO particles up to 1 μm in size were observed on the surfaces of the films. The observed microstructural features were similar to those of the Y-rich materials.


Sign in / Sign up

Export Citation Format

Share Document