Simulation of the effect of realistic surface textures on thermally induced topcoat stress fields by two-dimensional interface functions

2014 ◽  
Vol 258 ◽  
pp. 181-188 ◽  
Author(s):  
Christian Nordhorn ◽  
Robert Mücke ◽  
Robert Vaßen
2005 ◽  
Vol 874 ◽  
Author(s):  
Erik Van der Giessen ◽  
Teun Koeman ◽  
Teun Van Dillen ◽  
Patrick Onck

AbstractStrain stiffening of protein networks is explored by means of a finite strain analysis of a two-dimensional network model of cross-linked semiflexible filaments. The results show that stiffening is caused by non-affine network rearrangements that govern a transition from a bending dominated response at small strains to a stretching dominated response at large strains. Thermally-induced filament undulations only have a minor effect; they merely postpone the transition.


2020 ◽  
Vol 76 (5) ◽  
pp. 412-418
Author(s):  
Xiaoyun Hao ◽  
Yong Dou ◽  
Tong Cao ◽  
Lan Qin ◽  
Lu Yang ◽  
...  

With the new semi-rigid V-shaped bidentate pyridyl amide compound 5-methyl-N,N′-bis(pyridin-4-yl)benzene-1,3-dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol-κO)bis[5-methyl-N,N′-bis(pyridin-4-yl)benzene-1,3-dicarboxamide-κN]bis(thiocyanato-κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] (1), and one two-dimensional coordination polymer, catena-poly[[[bis(thiocyanato-κN)iron(II)]-bis[μ-5-methyl-N,N′-bis(pyridin-4-yl)benzene-1,3-dicarboxamide-κ2 N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O} n (2), were prepared by slow evaporation and H-tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single-crystal X-ray crystallography. The single-crystal X-ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1, while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2, with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two-dimensional grid-like network. Investigation of the magnetic properties reveals the always high-spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally-induced incomplete spin crossover (SCO) behaviour below 150 K in 2, demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.


2020 ◽  
Vol 80 ◽  
pp. 103927
Author(s):  
Shanlong Yao ◽  
Michele Zappalorto ◽  
Wei Pan ◽  
Changzheng Cheng ◽  
Zhongrong Niu

1989 ◽  
Vol 169 ◽  
Author(s):  
N.-C. Yeh

AbstractA model of continuous two-dimensional melting in the mixed state of high temperature superconductors is proposed. Two-dimensional melting sets in at a cross-over temperature Tx(H) below the three-dimensinal phase transition Tx(H) due to finite size effects, and Tx(H) is a function of the sample thickness (lc), applied magnetic field (H), and k(= λ/ξ) For a given zero-field transition temperature Tc0 and material properties, (such as defect density), the onset temperature of 2D-melting (Tx(H)) decreases with decreasing sample thickness and increasing magnetic field. In transport studies, thermally induced melting is further complicated by the depinning effect of high current densities.


Sign in / Sign up

Export Citation Format

Share Document