Highly sensitive and reproducible SERS substrates of bilayer Au and Ag nano-island arrays by thermal evaporation deposition

2018 ◽  
Vol 350 ◽  
pp. 823-830 ◽  
Author(s):  
Wei-Lin Syu ◽  
Yu-Hsuan Lin ◽  
Abhyuday Paliwal ◽  
Kuan-Syun Wang ◽  
Ting-Yu Liu
Author(s):  
Chengpeng Zhang ◽  
Shuai Chen ◽  
Zhaoliang Jiang ◽  
Zhenyu Shi ◽  
Jilai Wang ◽  
...  

2017 ◽  
Vol 239 ◽  
pp. 795-799 ◽  
Author(s):  
Jean-François Bryche ◽  
Benoît Bélier ◽  
Bernard Bartenlian ◽  
Grégory Barbillon

2021 ◽  
Author(s):  
revathy m s ◽  
D Murugesan ◽  
Naidu Dhanpal Jayram

Abstract Thin films and Surface Enhanced Raman spectroscopy have a strong bonding towards development of Sensors. From last 4 decades SERS has been used as effective tool for detection of toxic dyes, in food industry and agriculture world. To minimize the cost and fabrication over large surface is the most challenging task in substrate fabrication. In the present work an attempt has been made towards dual coatings, which could act as an effective SERS Substrates. An effective and facile approach of low cost bi-metallic Nanostructured film has been fabricated using thermal evaporation. Using the standard characterization techniques such as FE-SEM and XRD, the obtained films were Rhodamine 6G was used as an analyte for the SERS studies. The detection of R6G was up to 10− 10mol l− 1solution.The present bi-metallic coating can be serves as an excellent SERS active surface and provides a versatile pathway to fabricate anisotropic nanostructure on a glass film.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 67204-67211 ◽  
Author(s):  
Chih-Wei Chiu ◽  
Po-Hsien Lin

A novel flexible, freestanding, large-scale, and disposable SERS substrate of core/shell Ag@silicate and poly(vinyl alcohol) spherical nanohybrids, fabricated by coaxial electrospray, allows for the high-efficiency detection of adenine from DNA.


Sign in / Sign up

Export Citation Format

Share Document