Surface modification of titanium implants by silk fibroin/Ag co-functionalized strontium titanate nanotubes for inhibition of bacterial-associated infection and enhancement of in vivo osseointegration

2021 ◽  
Vol 405 ◽  
pp. 126700
Author(s):  
Bingbing Wang ◽  
Zongze Wu ◽  
Jinping Lan ◽  
Yichao Li ◽  
Lei Xie ◽  
...  
Nanoscale ◽  
2015 ◽  
Vol 7 (21) ◽  
pp. 9908-9918 ◽  
Author(s):  
Elisabeth Rieger ◽  
Agnès Dupret-Bories ◽  
Laetitia Salou ◽  
Marie-Helene Metz-Boutigue ◽  
Pierre Layrolle ◽  
...  

Nanoscale surface modification of titanium microbeads can control the soft tissue response in vitro and in vivo.


Author(s):  
Mohini Gajiwala ◽  
Jyoti Paliwal ◽  
Syed Yawer Husain ◽  
Ashish Dadarwal ◽  
Rajni Kalla ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Lee Kian Khoo ◽  
Sirichai Kiattavorncharoen ◽  
Verasak Pairuchvej ◽  
Nisanat Lakkhanachatpan ◽  
Natthamet Wongsirichat ◽  
...  

Introduction: Implant surface modification methods have recently involved laser treatment to achieve the desired implant surface characteristics. Meanwhile, surface modification could potentially introduce foreign elements to the implant surface during the manufacturing process. Objectives: The study aimed to investigate the surface chemistry and topography of commercially available laser-modified titanium implants, together with evaluating the cell morphology and cell adhesion of human fetal osteoblast (hFOB) seeded onto the same implants. Method: Six (6) samples of commercially available laser-modified titanium implants were investigated. These implants were manufactured by two different companies. Three (3) implants were made from commercially pure grade 4 Titanium (Brand X); and three were made from grade 5 Ti6Al4V (Brand Y). The surface topography of these implants was analyzed by scanning electron microscope (SEM) and the surface chemistry was evaluated with electron dispersive x-ray spectroscopy(EDS). Human fetal osteoblasts were seeded onto the implant fixtures to investigate the biocompatibility and adhesion. Results & Discussion: Brand X displayed dark areas under SEM while it was rarely found on brand Y. These dark areas were consistent with their organic matter. The hFOB cell experiments revealed cell adhesion with filopodia on Brand X samples which is consistent with cell maturation. The cells on Brand Y were morphologically round and lacked projections, one sample was devoid of any noticeable cells under SEM. Cell adhesion was observed early at 48 hrs in laser-irradiated titanium fixtures from both the brands. Conclusion: The presence of organic impurities in Brand X should not be overlooked because disruption of the osseointegration process may occur due to the rejection of the biomaterial in an in-vivo model. Nevertheless, there was insufficient evidence to link implant failure directly with carbon contaminated implant surfaces. Further studies to determine the toxicity of Vanadium from Ti6Al4V in an in-vivo environment should indicate the reason for different cell maturation.


2007 ◽  
Vol 18 (12) ◽  
pp. 2291-2296 ◽  
Author(s):  
Garrit Koller ◽  
Richard J. Cook ◽  
Ian D. Thompson ◽  
Timothy F. Watson ◽  
Lucy Di Silvio

2013 ◽  
Vol 45 (9) ◽  
pp. 1395-1401 ◽  
Author(s):  
A. Gomez Sanchez ◽  
W. Schreiner ◽  
J. Ballarre ◽  
A. Cisilino ◽  
G. Duffó ◽  
...  

2009 ◽  
Vol 20 (4) ◽  
pp. 710-718 ◽  
Author(s):  
Jan Michael ◽  
Lena Schönzart ◽  
Ina Israel ◽  
René Beutner ◽  
Dieter Scharnweber ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Kensuke Kuroda ◽  
Masazumi Okido

Many techniques for the surface modification of titanium and its alloys have been proposed from the viewpoint of improving bioactivity. This paper contains an overview of surface treatment methods, including coating with hydroxyapatite (HAp), an osteoconductive compound. There are two types of coating methods: pyroprocessing and hydroprocessing. In this paper, hydroprocessing for coating on the titanium substrate with HAp, carbonate apatite (CO3–Ap), a CO3–Ap/CaCO3composite, HAp/collagen, and a HAp/gelatin composite is outlined. Moreover, evaluation by implantation of surface-modified samples in rat tibiae is described.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2798
Author(s):  
Saturnino Marco Lupi ◽  
Mirko Torchia ◽  
Silvana Rizzo

The discovery of osseointegration of titanium implants revolutionized the dental prosthesis field. Traditionally, implants have a surface that is processed by additive or subtractive techniques, which have positive effects on the osseointegration process by altering the topography. In the last decade, innovative implant surfaces have been developed, on which biologically active molecules have been immobilized with the aim of increasing stimulation at the implant–biological tissue interface, thus favoring the quality of osseointegration. Among these molecules, some are normally present in the human body, and the techniques for the immobilization of these molecules on the implant surface have been called Biochemical Modification of Titanium Surfaces (BMTiS). Different techniques have been described in order to immobilize those biomolecules on titanium implant surfaces. The aim of the present paper is to present evidence, available from in vivo studies, about the effects of biochemical modification of titanium oral implants on osseointegration.


Sign in / Sign up

Export Citation Format

Share Document