Quantum Circuit Compilation by Genetic Algorithm for Quantum Approximate Optimization Algorithm applied to MaxCut Problem

Author(s):  
Lis Arufe ◽  
Miguel A. González ◽  
Angelo Oddi ◽  
Riccardo Rasconi ◽  
Ramiro Varela
2020 ◽  
Vol 19 (9) ◽  
Author(s):  
M. E. S. Morales ◽  
J. D. Biamonte ◽  
Z. Zimborás

Abstract The quantum approximate optimization algorithm (QAOA) is considered to be one of the most promising approaches towards using near-term quantum computers for practical application. In its original form, the algorithm applies two different Hamiltonians, called the mixer and the cost Hamiltonian, in alternation with the goal being to approach the ground state of the cost Hamiltonian. Recently, it has been suggested that one might use such a set-up as a parametric quantum circuit with possibly some other goal than reaching ground states. From this perspective, a recent work (Lloyd, arXiv:1812.11075) argued that for one-dimensional local cost Hamiltonians, composed of nearest neighbour ZZ terms, this set-up is quantum computationally universal and provides a universal gate set, i.e. all unitaries can be reached up to arbitrary precision. In the present paper, we complement this work by giving a complete proof and the precise conditions under which such a one-dimensional QAOA might produce a universal gate set. We further generalize this type of gate-set universality for certain cost Hamiltonians with ZZ and ZZZ terms arranged according to the adjacency structure of certain graphs and hypergraphs.


Author(s):  
Davide Venturelli ◽  
Minh Do ◽  
Eleanor Rieffel ◽  
Jeremy Frank

We investigate the application of temporal planners to the problem of compiling quantum circuits to emerging quantum hardware. While our approach is general, we focus our initial experiments on Quantum Approximate Optimization Algorithm (QAOA) circuits that have few ordering constraints and thus allow highly parallel plans. We report on experiments using several temporal planners to compile circuits of various sizes to a realistic hardware architecture. This early empirical evaluation suggests that temporal planning is a viable approach to quantum circuit compilation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Haibin Wang ◽  
Jiaojiao Zhao ◽  
Bosi Wang ◽  
Lian Tong

A quantum approximate optimization algorithm (QAOA) is a polynomial-time approximate optimization algorithm used to solve combinatorial optimization problems. However, the existing QAOA algorithms have poor generalization performance in finding an optimal solution from a feasible solution set of combinatorial problems. In order to solve this problem, a quantum approximate optimization algorithm with metalearning for the MaxCut problem (MetaQAOA) is proposed. Specifically, a quantum neural network (QNN) is constructed in the form of the parameterized quantum circuit to detect different topological phases of matter, and a classical long short-term memory (LSTM) neural network is used as a black-box optimizer, which can quickly assist QNN to find the approximate optimal QAOA parameters. The experiment simulation via TensorFlow Quantum (TFQ) shows that MetaQAOA requires fewer iterations to reach the threshold of the loss function, and the threshold of the loss value after training is smaller than comparison methods. In addition, our algorithm can learn parameter update heuristics which can generalize to larger system sizes and still outperform other initialization strategies of this scale.


2021 ◽  
Vol 20 (2) ◽  
Author(s):  
Rebekah Herrman ◽  
James Ostrowski ◽  
Travis S. Humble ◽  
George Siopsis

2021 ◽  
Vol 2 (2) ◽  
pp. 1-13
Author(s):  
Seid Miad Zandavi ◽  
Vera Chung ◽  
Ali Anaissi

The scheduling of multi-user remote laboratories is modeled as a multimodal function for the proposed optimization algorithm. The hybrid optimization algorithm, hybridization of the Nelder-Mead Simplex algorithm, and Non-dominated Sorting Genetic Algorithm (NSGA), named Simplex Non-dominated Sorting Genetic Algorithm (SNSGA), is proposed to optimize the timetable problem for the remote laboratories to coordinate shared access. The proposed algorithm utilizes the Simplex algorithm in terms of exploration and NSGA for sorting local optimum points with consideration of potential areas. SNSGA is applied to difficult nonlinear continuous multimodal functions, and its performance is compared with hybrid Simplex Particle Swarm Optimization, Simplex Genetic Algorithm, and other heuristic algorithms. The results show that SNSGA has a competitive performance to address timetable problems.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 464
Author(s):  
Filip B. Maciejewski ◽  
Flavio Baccari ◽  
Zoltán Zimborás ◽  
Michał Oszmaniec

Measurement noise is one of the main sources of errors in currently available quantum devices based on superconducting qubits. At the same time, the complexity of its characterization and mitigation often exhibits exponential scaling with the system size. In this work, we introduce a correlated measurement noise model that can be efficiently described and characterized, and which admits effective noise-mitigation on the level of marginal probability distributions. Noise mitigation can be performed up to some error for which we derive upper bounds. Characterization of the model is done efficiently using Diagonal Detector Overlapping Tomography – a generalization of the recently introduced Quantum Overlapping Tomography to the problem of reconstruction of readout noise with restricted locality. The procedure allows to characterize k-local measurement cross-talk on N-qubit device using O(k2klog(N)) circuits containing random combinations of X and identity gates. We perform experiments on 15 (23) qubits using IBM's (Rigetti's) devices to test both the noise model and the error-mitigation scheme, and obtain an average reduction of errors by a factor >22 (>5.5) compared to no mitigation. Interestingly, we find that correlations in the measurement noise do not correspond to the physical layout of the device. Furthermore, we study numerically the effects of readout noise on the performance of the Quantum Approximate Optimization Algorithm (QAOA). We observe in simulations that for numerous objective Hamiltonians, including random MAX-2-SAT instances and the Sherrington-Kirkpatrick model, the noise-mitigation improves the quality of the optimization. Finally, we provide arguments why in the course of QAOA optimization the estimates of the local energy (or cost) terms often behave like uncorrelated variables, which greatly reduces sampling complexity of the energy estimation compared to the pessimistic error analysis. We also show that similar effects are expected for Haar-random quantum states and states generated by shallow-depth random circuits.


Sign in / Sign up

Export Citation Format

Share Document