scholarly journals Preparation and identification of a biocompatible polymer composite: Shielding against the interference of electromagnetic waves

2022 ◽  
Vol 283 ◽  
pp. 116983
Author(s):  
Zahra Ameri ◽  
Esmaiel Soleimani ◽  
Ali Shafyei
2020 ◽  
Vol 1 (3) ◽  
pp. 469-480
Author(s):  
Ramesh Marasini ◽  
Tuyen Duong Thanh Nguyen ◽  
Sagar Rayamajhi ◽  
Santosh Aryal

A simple and versatile nanoformulation strategy is presented by combining the synthetic lipids, biocompatible polymer, and tumor penetrating peptide (LyP-1) into a composite nanosystem for targeted drug delivery and imaging in a single session. 


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yukiko Yasukawa ◽  
Kouhei Nozawa ◽  
Taneli Tiittanen ◽  
Maarit Karppinen ◽  
Johan Lindén ◽  
...  

AbstractWe have fabricated a high quality magnetic Ni0.5Zn0.5Fe2O4 ferrite powder/polymer composite sheet consisting of common and environmentally friendly elements only. The sheet was then tested for its dynamic permeability by irradiating with electromagnetic waves with frequencies up to 50 GHz. Two different originally developed methods were used for the high-frequency permeability measurements, a short-circuited microstrip line method and a microstrip line-probe method. It is challenging to measure the dynamic permeability of magnetic thin films/sheets beyond 10 GHz because of the low response signal from these materials. However, the two methods produced essentially equivalent results. In the frequency dependent permeability profile, the maximum position of the profile, $$\mu ^{\prime \prime }_{max}$$ μ max ″ , shifted towards higher frequencies upon increasing an applied (strong) static external magnetic field, $$H_{dc}$$ H dc . A linear relationship between $$\mu^ {\prime \prime }_{max}$$ μ max ″ and $$H_{dc}$$ H dc for the entire range of $$H_{dc}$$ H dc was observed even at small $$H_{dc}$$ H dc . In general, the spinel-structured Ni-based ferrites exhibit low magnetic anisotropy, but the present sample showed a uniaxial-anisotropic behavior in the parallel direction of the sheet. Our Ni0.5Zn0.5Fe2O4 powder/polymer composite sheet thus exhibits high performance at GHz frequencies, and should be applicable e.g. as an anisotropic electromagnetic wave-interference material.


Author(s):  
Naga Srilatha Cheekuramelli ◽  
Dattatraya Late ◽  
S. Kiran ◽  
Baijayantimala Garnaik

1997 ◽  
Vol 161 ◽  
pp. 761-776 ◽  
Author(s):  
Claudio Maccone

AbstractSETI from space is currently envisaged in three ways: i) by large space antennas orbiting the Earth that could be used for both VLBI and SETI (VSOP and RadioAstron missions), ii) by a radiotelescope inside the Saha far side Moon crater and an Earth-link antenna on the Mare Smythii near side plain. Such SETIMOON mission would require no astronaut work since a Tether, deployed in Moon orbit until the two antennas landed softly, would also be the cable connecting them. Alternatively, a data relay satellite orbiting the Earth-Moon Lagrangian pointL2would avoid the Earthlink antenna, iii) by a large space antenna put at the foci of the Sun gravitational lens: 1) for electromagnetic waves, the minimal focal distance is 550 Astronomical Units (AU) or 14 times beyond Pluto. One could use the huge radio magnifications of sources aligned to the Sun and spacecraft; 2) for gravitational waves and neutrinos, the focus lies between 22.45 and 29.59 AU (Uranus and Neptune orbits), with a flight time of less than 30 years. Two new space missions, of SETI interest if ET’s use neutrinos for communications, are proposed.


Author(s):  
Anthony S-Y Leong ◽  
David W Gove

Microwaves (MW) are electromagnetic waves which are commonly generated at a frequency of 2.45 GHz. When dipolar molecules such as water, the polar side chains of proteins and other molecules with an uneven distribution of electrical charge are exposed to such non-ionizing radiation, they oscillate through 180° at a rate of 2,450 million cycles/s. This rapid kinetic movement results in accelerated chemical reactions and produces instantaneous heat. MWs have recently been applied to a wide range of procedures for light microscopy. MWs generated by domestic ovens have been used as a primary method of tissue fixation, it has been applied to the various stages of tissue processing as well as to a wide variety of staining procedures. This use of MWs has not only resulted in drastic reductions in the time required for tissue fixation, processing and staining, but have also produced better cytologic images in cryostat sections, and more importantly, have resulted in better preservation of cellular antigens.


1998 ◽  
Vol 1 (1) ◽  
pp. 45-52 ◽  
Author(s):  
M. Defos du Rau ◽  
F. Pessan ◽  
G. Ruffie ◽  
V. Vignéras-Lefebvre ◽  
J. P. Parneix

Sign in / Sign up

Export Citation Format

Share Document