Protective action of the immunomodulator ginsan against carbon tetrachloride-induced liver injury via control of oxidative stress and the inflammatory response

2010 ◽  
Vol 242 (3) ◽  
pp. 318-325 ◽  
Author(s):  
Ji-Young Shim ◽  
Mi-Hyoung Kim ◽  
Hyung-Doo Kim ◽  
Ji-Yeon Ahn ◽  
Yeon-Sook Yun ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Ruidong Li ◽  
Wenchang Yang ◽  
Yuping Yin ◽  
Xianxiong Ma ◽  
Peng Zhang ◽  
...  

The liver is an important metabolic organ, and acute liver injury (ALI) is potentially lethal. Itaconate, a metabolic intermediate from the tricarboxylic acid cycle, showed emerging anti-oxidative and anti-inflammation properties, and an accumulating protective effect in multiple diseases, but its role in ALI still needs to be further explored. Here we established an ALI model induced by carbon tetrachloride in mice. Our results showed that 4-Octyl itaconate (OI), a derivate of itaconate, mitigated hepatic damage by improving liver function, reducing histopathological damage, and decreasing the death of hepatocytes. Additionally, OI decreased myeloperoxidase and thiobarbituric acid reactive substances (TBARS) levels in the ALI model. OI also inhibited the inflammatory response by reducing pro-inflammatory cytokine secretion (IL-6, TNF-α, IL-1β, and MCP-1) and infiltration of macrophages and neutrophils in the ALI model. However, administration of ML385, a specified Nrf2 inhibitor, eliminated the protective properties of OI in the CCl4-induced liver injury model by increasing hepatic damage and oxidative stress. Furthermore, OI increased the expression and nuclear translocation of Nrf2 and elevated the expression of heme oxygenase-1 and NAD(P)H quinone oxidoreductase 1, while knockdown of Nrf2 eliminated these effects in murine hepatocyte NCTC 1469 under CCl4 treatment. Moreover, we found that OI reduced serum High-mobility group box 1 (HMGB1) levels in CCl4-treated mice. Finally, OI inhibited nuclear translocation of factor-kappa B (NF-𝜅B) and inflammatory cytokine production in murine macrophages. In conclusion, these results indicated that OI ameliorated CCl4-induced ALI by mitigating oxidative stress and the inflammatory response. The possible mechanism was associated with the elevation of Nrf2 nuclear translocation and inhibition of HMGB1 mediated the nuclear translocation of NF-𝜅B.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qingshan Chen ◽  
Qi Zhan ◽  
Ying Li ◽  
Sen Sun ◽  
Liang Zhao ◽  
...  

Schisandra chinensis(S. chinensis) is a traditional Chinese herbal medicine widely used for the treatment of liver disease, whose main active components are lignans. However, the action mechanisms of the lignans inS. chinensisremain unclear. This study aimed to investigate the protective effect and related molecular mechanism ofSchisandralignan extract (SLE) against carbon tetrachloride- (CCl4-) induced acute liver injury in mice. Different doses of SLE at 50, 100, and 200 mg/kg were administered daily by gavage for 5 days before CCl4treatment. The results showed that SLE significantly decreased the activities of serum ALT/AST and reduced liver pathologic changes induced by CCl4. Pretreatment with SLE not only decreased the content of MDA but increased SOD, GSH, and GSH-Px activities in the liver, suggesting that SLE attenuated CCl4-induced oxidative stress. The expression levels of inflammatory cytokines TNF-a, IL-1β, and IL-6 were decreased after oral administration of SLE, probably because lignans inhibited the NF-κB activity. Additionally, SLE also inhibited hepatocyte apoptosis by suppressing JNK activation and regulating Bcl-2/Bax signaling pathways. In conclusion, these results suggested that SLE prevented CCl4-induced liver injury through a combination of antioxidative stress, anti-inflammation, and antihepatocyte apoptosis and alleviated inflammation and apoptosis by regulating the NF-κB, JNK, and Bcl-2/Bax signaling pathways.


2007 ◽  
Vol 100 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Zhi-ming Wu ◽  
Tao Wen ◽  
Yu-fen Tan ◽  
Yan Liu ◽  
Feng Ren ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 167 ◽  
Author(s):  
Adil Farooq Wali ◽  
Jayachithra Ramakrishna Pillai ◽  
Yusra Al Dhaheri ◽  
Muneeb U. Rehman ◽  
Ambreen Shoaib ◽  
...  

The purpose of this study is to analyze the polyphenolic rich extract of Crocus sativus L. petals (CSP) in modulating liver oxidative stress and inflammatory response status against rifampicin isoniazid (INH-RIF) drug-induced liver injury. The INH-RIF was administered for 14 days with varying doses in Wistar rats, while silymarin was administered as standard dose. We report the defensive impacts of CSP against INH-RIF induced liver oxidative stress and proinflammatory cytokine. The CSP treatment at both doses significantly controlled all modulating biochemical hepatic injury indicators and resulted in the attenuation of arbitral INH-RIF damage. The components present in CSP identified by LC–ESI-Q-TOF–MS were found to be flavonoids and fatty acids. It can be inferred that CSP possesses a hepatoprotective capacity against INH-RIF-mediated hepatic injury, which may prove to be a medically beneficial natural product for the management of drug-induced liver injury.


Sign in / Sign up

Export Citation Format

Share Document