Constraint analysis of thickness effects on fracture resistance behavior of clamped single-edge notch tension specimen

2020 ◽  
Vol 110 ◽  
pp. 102802
Author(s):  
Baoming Gong ◽  
Congcong Xia ◽  
Giuseppe Lacidogna ◽  
Quanjun Xu ◽  
Yong Liu ◽  
...  
Author(s):  
Ba˚rd Nyhus ◽  
Mario Loria Polanco ◽  
Oddvin O̸rjasæther

During installation operations offshore pipes are often strained beyond yielding. Due to the high loading condition and the high costs of these operations it is important with accurate defect assessment analysis to avoid delays caused by unnecessary repairs or failure because of flaws that should have been detected and repaired. There is therefore a need for an accurate assessment procedure that can be a tool for defect assessment analysis for this application. It is commonly accepted that the fracture toughness is dependent on the geometry constraint at the crack tip. The traditional single edge notch bend (SENB) specimens have a high geometry constraint, and give lower bound fracture toughness for all geometries. For reeling operations these fracture toughness values are often too low to be used in defect assessment of reeling operations. The same is the assumption of plastic collapse when the net section stress is equal to the average between the yield strength and tensile strength. In this paper, the single edge notch tension specimen (SENT) is presented as an alternative fracture mechanics specimen. This specimen has a geometry constraint that is much closer to flaws in pipes than SENB specimens, which will give more realistic fracture properties of the pipe. In the procedure for defect assessments we present, both the fracture toughness and plastic collapse properties are taken from testing of SENT specimens. FE simulations and full scale testing verify the procedure.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1400
Author(s):  
Rhys Jones ◽  
Calvin Rans ◽  
Athanasios P. Iliopoulos ◽  
John G. Michopoulos ◽  
Nam Phan ◽  
...  

The United States Air Force (USAF) Guidelines for the Durability and Damage Tolerance (DADT) certification of Additive Manufactured (AM) parts states that the most difficult challenge for the certification of an AM part is to establish an accurate prediction of its DADT. How to address this challenge is the focus of the present paper. To this end this paper examines the variability in crack growth in tests on additively manufactured (AM) Ti-6Al-4V specimens built using selective layer melting (SLM). One series of tests analysed involves thirty single edge notch tension specimens with five build orientations and two different post heat treatments. The other test program analysed involved ASTM standard single edge notch specimens with three different build directions. The results of this study highlight the ability of the Hartman–Schijve crack growth equation to capture the variability and the anisotropic behaviour of crack growth in SLM Ti-6Al-4V. It is thus shown that, despite the large variability in crack growth, the intrinsic crack growth equation remains unchanged and that the variability and the anisotropic nature of crack growth in this test program is captured by allowing for changes in both the fatigue threshold and the cyclic fracture toughness.


1987 ◽  
Vol 28 (2) ◽  
pp. 223-238 ◽  
Author(s):  
Noda Nao-Aki ◽  
Nisitani Hironobu

1986 ◽  
Vol 26 (2) ◽  
pp. 142-149
Author(s):  
H. A. Ezzat ◽  
G. Sich

Author(s):  
Claudio Ruggieri ◽  
Rodolfo F. de Souza

This work addresses the development of wide range compliance solutions for tensile-loaded and bend specimens based on CMOD. The study covers selected standard and non-standard fracture test specimens, including the compact tension C(T) configuration, the single edge notch tension SE(T) specimen with fixed-grip loading (clamped ends) and the single edge notch bend SE(B) geometry with varying specimen spam over width ratio and loaded under 3-point and 4-point flexural configuration. Very detailed elastic finite element analysis in 2-D setting are conducted on fracture models with varying crack sizes to generate the evolution of load with displacement for those configurations from which the dependence of specimen compliance on crack length, specimen geometry and loading mode is determined. The extensive numerical analyses conducted here provide a larger set of solutions upon which more accurate experimental evaluations of crack size changes in fracture toughness and fatigue crack growth testing can be made.


Sign in / Sign up

Export Citation Format

Share Document