Antibiotic-affinity chromatographic test strip for quantitative analysis and antibiotic resistance testing of Staphylococcus aureus

Talanta ◽  
2019 ◽  
Vol 205 ◽  
pp. 120130 ◽  
Author(s):  
Yanli Shi ◽  
Honglin Yang ◽  
Yong He ◽  
Zhifeng Fu
2021 ◽  
Author(s):  
Qiong Huang

Food poisoning caused by microorganisms has caused widespread concern. Herein, a highly sensitive on-site screening test strip for the detection of different pathogenic microorganisms (Listeria monocytogenes and Staphylococcus aureus) was...


Author(s):  
H. F. Massawe ◽  
R. H. Mdegela ◽  
L. R. Kurwijila

Aim: The study determined and evaluated the prevalence and antibiotic resistance of Staphylococcus aureus isolated from milk collected along the milk value chain from farm herds, milk collection center, and milk shops in Mbeya rural and Mbozi districts, Tanzania. Materials and Methods: A total of 150 milk samples were collected; 96 from farmers' herds, 18 from milk collection centers, and 36 from milk shops. The samples were cultured in Mannitol salt agar for pathogen isolation and biochemical tests performed for confirmation of S. aureus. Kirby-Bauer disk diffusion method was employed for antibiotic resistance testing. Results: One hundred and forty samples yielded Staphylococcus species; these were from farmer's herd (92), milk collection center (18), and milk shops (30), respectively. Biochemical tests showed that 21 (15%) were positive for S. aureus. The corresponding prevalence rates from the value chain nodes were 14.1%, 16.7%, and 16.7%, respectively. Resistance to penicillin was frequently observed (57.1%) and vancomycin was sensitive to all S. aureus isolates tested. Resistance along the sampling points showed a significant positive correlation (r=0.82, p<0.0001; r=0.65, p<0.003; and r=0.61, p<0.01) between farmers, milk collection points, and milk shops, respectively. More than half (57.1%) of the isolates exhibited resistance to three or more of the antibiotics used in this study. S. aureus isolates were shown to have a multiple antimicrobial resistance patterns, particularly with respect to penicillin, ampicillin, erythromycin, and tetracycline. Conclusion: The level of staphylococcal isolates and the antibiotic resistance of S. aureus found in this study is an indication of subclinical mastitis, poor hygiene, and inappropriate use of antibiotics; therefore, education of farmers on subclinical mastitis control and proper use of antibiotics would be of benefits in these areas.


2021 ◽  
Vol 14 (5) ◽  
pp. 420
Author(s):  
Tanveer Ali ◽  
Abdul Basit ◽  
Asad Mustafa Karim ◽  
Jung-Hun Lee ◽  
Jeong-Ho Jeon ◽  
...  

β-Lactam antibiotics target penicillin-binding proteins and inhibit the synthesis of peptidoglycan, a crucial step in cell wall biosynthesis. Staphylococcus aureus acquires resistance against β-lactam antibiotics by producing a penicillin-binding protein 2a (PBP2a), encoded by the mecA gene. PBP2a participates in peptidoglycan biosynthesis and exhibits a poor affinity towards β-lactam antibiotics. The current study was performed to determine the diversity and the role of missense mutations of PBP2a in the antibiotic resistance mechanism. The methicillin-resistant Staphylococcus aureus (MRSA) isolates from clinical samples were identified using phenotypic and genotypic techniques. The highest frequency (60%, 18 out of 30) of MRSA was observed in wound specimens. Sequence variation analysis of the mecA gene showed four amino acid substitutions (i.e., E239K, E239R, G246E, and E447K). The E239R mutation was found to be novel. The protein-ligand docking results showed that the E239R mutation in the allosteric site of PBP2a induces conformational changes in the active site and, thus, hinders its interaction with cefoxitin. Therefore, the present report indicates that mutation in the allosteric site of PBP2a provides a more closed active site conformation than wide-type PBP2a and then causes the high-level resistance to cefoxitin.


Sign in / Sign up

Export Citation Format

Share Document