Crystal morphology tuning and green post-synthetic modification of metal organic framework for HPLC enantioseparation

Talanta ◽  
2021 ◽  
pp. 123143
Author(s):  
Xue Ma ◽  
Yun Guo ◽  
Ling Zhang ◽  
Kexuan Wang ◽  
Ajuan Yu ◽  
...  
2021 ◽  
Vol 143 (13) ◽  
pp. 5044-5052
Author(s):  
Kristen A. Colwell ◽  
Megan N. Jackson ◽  
Rodolfo M. Torres-Gavosto ◽  
Sudi Jawahery ◽  
Bess Vlaisavljevich ◽  
...  

2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2017 ◽  
Vol 41 (3) ◽  
pp. 1137-1141 ◽  
Author(s):  
Hong-Rui Tian ◽  
Chao-Ying Gao ◽  
Yang Yang ◽  
Jing Ai ◽  
Chao Liu ◽  
...  

A microporous metal–organic framework, built from a silicon-centered linker that is among the never documented examples, exhibits a hollow tubular crystal morphology and displays turn-on and turn-off luminescence responses for n-butanol and acetone, respectively.


CrystEngComm ◽  
2019 ◽  
Vol 21 (20) ◽  
pp. 3199-3208 ◽  
Author(s):  
Pei Nian ◽  
Haiou Liu ◽  
Xiongfu Zhang

Two 2D Co2(bim)4 and Co(bim)(OAc) nanosheets were directly synthesized by an ammonia-modulated approach.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhen Li ◽  
Ying Peng ◽  
Xingyu Xia ◽  
Zhe Cao ◽  
Yuqing Deng ◽  
...  

AbstractA Sr-based metal-organic framework (MOF) is introduced as ketoprofen carrier to form a comprehensive system for treating osteoarthritis (OA), and the drug loading amount and release rate is investigated. Structural characterization of the samples showed that Sr/PTA-MOF had good crystal morphology and structure, and chemical and thermal stability. Ketoprofen was successfully loaded on the MOF carrier, which had been identified by high performance liquid chromatography (HPLC) and thermogravimetric analysis (TGA). The release experiment manifested that more than 90% of ketoprofen released from Sr/PTA-MOF after 24 h, and ketoprofen delivery was mainly governed by the Higuchi model. Furthermore, cytotoxicity experiment manifested that synthesized MOF carrier had no poisonous effect on OA chondrocytes, which provided a preliminary foundation for the realization of comprehensive treating OA.


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


Sign in / Sign up

Export Citation Format

Share Document