Complexity and algorithms for neighbor-sum-2-distinguishing {1,3}-edge-weighting of graphs

Author(s):  
B.S. Panda ◽  
Priyamvada
Keyword(s):  
2012 ◽  
Vol 34 (5) ◽  
pp. 918-929 ◽  
Author(s):  
A. Gijsenij ◽  
T. Gevers ◽  
J. van de Weijer

Author(s):  
Stuart Oldham ◽  
Aurina Arnatkevic̆iūtė ◽  
Robert E. Smith ◽  
Jeggan Tiego ◽  
Mark A. Bellgrove ◽  
...  

AbstractHead motion is a major confounding factor in neuroimaging studies. While numerous studies have investigated how motion impacts estimates of functional connectivity, the effects of motion on structural connectivity measured using diffusion MRI have not received the same level of attention, despite the fact that, like functional MRI, diffusion MRI relies on elaborate preprocessing pipelines that require multiple choices at each step. Here, we report a comprehensive analysis of how these choices influence motion-related contamination of structural connectivity estimates. Using a healthy adult sample (N = 252), we evaluated 240 different preprocessing pipelines, devised using plausible combinations of different choices related to explicit head motion correction, tractography propagation algorithms, track seeding methods, track termination constraints, quantitative metrics derived for each connectome edge, and parcellations. We found that an approach to motion correction that includes outlier replacement and within-slice volume correction led to a dramatic reduction in cross-subject correlations between head motion and structural connectivity strength, and that motion contamination is more severe when quantifying connectivity strength using mean tract fractional anisotropy rather than streamline count. We also show that the choice of preprocessing strategy can significantly influence subsequent inferences about network organization, with the location of network hubs varying considerably depending on the specific preprocessing steps applied. Our findings indicate that the impact of motion on structural connectivity can be successfully mitigated using recent motion-correction algorithms that include outlier replacement and within-slice motion correction.HighlightsWe assess how motion affects structural connectivity in 240 preprocessing pipelinesMotion contamination of structural connectivity depends on preprocessing choicesAdvanced motion correction tools reduce motion confoundsFA edge weighting is more susceptible to motion effects than streamline count


2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Theodore R. Gibbons ◽  
Stephen M. Mount ◽  
Endymion D. Cooper ◽  
Charles F. Delwiche

2022 ◽  
Vol 16 (1) ◽  
pp. 1-24
Author(s):  
Marinos Poiitis ◽  
Athena Vakali ◽  
Nicolas Kourtellis

Aggression in online social networks has been studied mostly from the perspective of machine learning, which detects such behavior in a static context. However, the way aggression diffuses in the network has received little attention as it embeds modeling challenges. In fact, modeling how aggression propagates from one user to another is an important research topic, since it can enable effective aggression monitoring, especially in media platforms, which up to now apply simplistic user blocking techniques. In this article, we address aggression propagation modeling and minimization in Twitter, since it is a popular microblogging platform at which aggression had several onsets. We propose various methods building on two well-known diffusion models, Independent Cascade ( IC ) and Linear Threshold ( LT ), to study the aggression evolution in the social network. We experimentally investigate how well each method can model aggression propagation using real Twitter data, while varying parameters, such as seed users selection, graph edge weighting, users’ activation timing, and so on. It is found that the best performing strategies are the ones to select seed users with a degree-based approach, weigh user edges based on their social circles’ overlaps, and activate users according to their aggression levels. We further employ the best performing models to predict which ordinary real users could become aggressive (and vice versa) in the future, and achieve up to AUC = 0.89 in this prediction task. Finally, we investigate aggression minimization by launching competitive cascades to “inform” and “heal” aggressors. We show that IC and LT models can be used in aggression minimization, providing less intrusive alternatives to the blocking techniques currently employed by Twitter.


2017 ◽  
Vol 28 (09) ◽  
pp. 1750111
Author(s):  
Yan Wang ◽  
Ding Juan Wu ◽  
Fang Lv ◽  
Meng Long Su

We investigate the concurrent dynamics of biased random walks and the activity-driven network, where the preferential transition probability is in terms of the edge-weighting parameter. We also obtain the analytical expressions for stationary distribution and the coverage function in directed and undirected networks, all of which depend on the weight parameter. Appropriately adjusting this parameter, more effective search strategy can be obtained when compared with the unbiased random walk, whether in directed or undirected networks. Since network weights play a significant role in the diffusion process.


2016 ◽  
Vol 106 (2) ◽  
pp. 307-335 ◽  
Author(s):  
Masayuki Karasuyama ◽  
Hiroshi Mamitsuka

2013 ◽  
Vol 8 (1) ◽  
pp. 121-132 ◽  
Author(s):  
Wen Juan Zhang ◽  
Xiang Chu Feng ◽  
Yu Han

2009 ◽  
Vol 4 (2) ◽  
pp. 325-334
Author(s):  
Hongliang Lu ◽  
Xu Yang ◽  
Qinglin Yu

2010 ◽  
Vol 13 (02) ◽  
pp. 217-238 ◽  
Author(s):  
GRAINNE KERR ◽  
DIMITRI PERRIN ◽  
HEATHER J. RUSKIN ◽  
MARTIN CRANE

In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document