Synthesis and characterisation of novel 3′-O- and 5′-O- modified azobenzene-thymidine phosphoramidites and their oligonucleotide conjugates as colorimeter DNA probes and FRET quenchers

2003 ◽  
Vol 44 (47) ◽  
pp. 8571-8575 ◽  
Author(s):  
Thorfinnur Gunnlaugsson ◽  
John M. Kelly ◽  
Mark Nieuwenhuyzen ◽  
Aoife M.K. O'Brien
The Analyst ◽  
2021 ◽  
Author(s):  
Jiawei Qi ◽  
Pinhua Rao ◽  
Lele Wang ◽  
Li Xu ◽  
Yanli Wen ◽  
...  

Pattern recognition, also called “array sensing” is a recognition strategy with a wide and expandable analysis range, based on the high-throughput analysis data. In this work, we constructed a sensor...


1990 ◽  
Vol 11 (03) ◽  
pp. 271-280
Author(s):  
J. H. P. Nyeko ◽  
O. K. Ole-Moiyoi ◽  
P. A. O. Majiwa ◽  
L. H. Otieno ◽  
P. M. Ociba

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 197
Author(s):  
Meiqing Liu ◽  
Haoran Li ◽  
Yanwei Jia ◽  
Pui-In Mak ◽  
Rui P. Martins

The emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a zoonotic pathogen, has led to the outbreak of coronavirus disease 2019 (COVID-19) pandemic and brought serious threats to public health worldwide. The gold standard method for SARS-CoV-2 detection requires both reverse transcription (RT) of the virus RNA to cDNA and then polymerase chain reaction (PCR) for the cDNA amplification, which involves multiple enzymes, multiple reactions and a complicated assay optimization process. Here, we developed a duplex-specific nuclease (DSN)-based signal amplification method for SARS-CoV-2 detection directly from the virus RNA utilizing two specific DNA probes. These specific DNA probes can hybridize to the target RNA at different locations in the nucleocapsid protein gene (N gene) of SARS-CoV-2 to form a DNA/RNA heteroduplex. DSN cleaves the DNA probe to release fluorescence, while leaving the RNA strand intact to be bound to another available probe molecule for further cleavage and fluorescent signal amplification. The optimized DSN amount, incubation temperature and incubation time were investigated in this work. Proof-of-principle SARS-CoV-2 detection was demonstrated with a detection sensitivity of 500 pM virus RNA. This simple, rapid, and direct RNA detection method is expected to provide a complementary method for the detection of viruses mutated at the PCR primer-binding regions for a more precise detection.


The Analyst ◽  
2021 ◽  
Author(s):  
Qingteng Lai ◽  
Wei Chen ◽  
Yanke Zhang ◽  
Zheng-Chun Liu

Peptide nucleic acids (PNAs) have attracted tremendous interest in the fabrication of highly sensitive electrochemical nucleic acid biosensor due to their higher stability and increased sensitivity than common DNA probes....


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1819
Author(s):  
Tatyana Karamysheva ◽  
Svetlana Romanenko ◽  
Alexey Makunin ◽  
Marija Rajičić ◽  
Alexey Bogdanov ◽  
...  

The gene composition, function and evolution of B-chromosomes (Bs) have been actively discussed in recent years. However, the additional genomic elements are still enigmatic. One of Bs mysteries is their spatial organization in the interphase nucleus. It is known that heterochromatic compartments are not randomly localized in a nucleus. The purpose of this work was to study the organization and three-dimensional spatial arrangement of Bs in the interphase nucleus. Using microdissection of Bs and autosome centromeric heterochromatic regions of the yellow-necked mouse (Apodemus flavicollis) we obtained DNA probes for further two-dimensional (2D)- and three-dimensional (3D)- fluorescence in situ hybridization (FISH) studies. Simultaneous in situ hybridization of obtained here B-specific DNA probes and autosomal C-positive pericentromeric region-specific probes further corroborated the previously stated hypothesis about the pseudoautosomal origin of the additional chromosomes of this species. Analysis of the spatial organization of the Bs demonstrated the peripheral location of B-specific chromatin within the interphase nucleus and feasible contact with the nuclear envelope (similarly to pericentromeric regions of autosomes and sex chromosomes). It is assumed that such interaction is essential for the regulation of nuclear architecture. It also points out that Bs may follow the same mechanism as sex chromosomes to avoid a meiotic checkpoint.


Sign in / Sign up

Export Citation Format

Share Document