Synthesis of oxidative metabolites of K-115, a novel Rho-kinase inhibitor

2021 ◽  
pp. 153589
Author(s):  
Noriaki Gomi ◽  
Kimiyuki Shibuya ◽  
Kiyoshi Kawamura ◽  
Mototsugu Kabeya
2021 ◽  
Vol 476 (5) ◽  
pp. 2159-2170
Author(s):  
Qiangtang Chen ◽  
Yu Wu ◽  
Yachun Yu ◽  
Junxiang Wei ◽  
Wen Huang

AbstractHIV-1 transactivator protein (Tat) induces tight junction (TJ) dysfunction and amyloid-beta (Aβ) clearance dysfunction, contributing to the development and progression of HIV-1-associated neurocognitive disorder (HAND). The Rho/ROCK signaling pathway has protective effects on neurodegenerative disease. However, the underlying mechanisms of whether Rho/ROCK protects against HIV-1 Tat-caused dysfunction of TJ and neprilysin (NEP)/Aβ transfer receptor expression have not been elucidated. C57BL/6 mice were administered sterile saline (i.p., 100 μL) or Rho-kinase inhibitor hydroxyfasudil (HF) (i.p., 10 mg/kg) or HIV-1 Tat (i.v., 100 μg/kg) or HF 30 min before being exposed to HIV-1 Tat once a day for seven consecutive days. Evans Blue (EB) leakage was detected via spectrophotometer and brain slides in mouse brains. The protein and mRNA levels of zonula occludens-1 (ZO-1), occludin, NEP, receptor for advanced glycation end products (RAGE), and low-density lipoprotein receptor-related protein 1 (LRP1) in mouse brain microvessels were, respectively, analyzed by Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. Exposure of the mice to HIV-1 Tat increased the amount of EB leakage, EB fluorescence intensity, blood–brain barrier (BBB) permeability, as well as the RAGE protein and mRNA levels, and decreased the protein and mRNA levels of ZO-1, occludin, NEP, and LRP1 in mouse brain microvessels. However, these effects were weakened by Rho-kinase inhibitor HF. Taken together, these results provide information that the Rho/ROCK signaling pathway is involved in HIV-1 Tat-induced dysfunction of TJ and NEP/Aβ transfer receptor expression in the C57BL/6 mouse brain. These findings shed some light on potentiality of inhibiting Rho/Rock signaling pathway in handling HAND.


Author(s):  
Josefine Clement Freiberg ◽  
Alexander von Spreckelsen ◽  
Naira Khachatryan ◽  
Miriam Kolko ◽  
Augusto Azuara-Blanco ◽  
...  

The Prostate ◽  
2015 ◽  
Vol 75 (15) ◽  
pp. 1774-1782 ◽  
Author(s):  
Felix Holmström ◽  
Shogo Shimizu ◽  
Takahiro Shimizu ◽  
Youichirou Higashi ◽  
Darryl T. Martin ◽  
...  

Hypertension ◽  
2013 ◽  
Vol 62 (suppl_1) ◽  
Author(s):  
Kevin B Atkins ◽  
Jharna Saha ◽  
Frank C Brosius

Expression of GLUT4 is decreased in arterial smooth muscle of hypertensive rats and mice, and total body overexpression of GLUT4 in mice prevents enhanced arterial reactivity. To demonstrate that the effect on vascular response to GLUT4 overexpression is vascular rather than systemic in origin we utilized smooth muscle-specific GLUT4 transgenic mice (SMG4). GLUT4 expression in aortae of SMG4 compared to WT mice was increased 2-3 fold. Adult wild-type (WT) and SMG4 mice were made hypertensive or not through implantation of angiotensin II (AngII; 1.4mg/kg/d for 2 wks) or vehicle containing osmotic mini-pumps. Both WT and SMG4 mice AngII-treated mice exhibited significantly increased systolic blood pressure. In AngII-treated WT mice (WT-AngII) aortic GLUT4 expression was significantly decreased, whereas GLUT4 expression in aortae of AngII-treated SMG4 mice (SMG4-AngII) was maintained. The phosphorylation of ERM and MYPT1(Thr850) were significantly increased in aortae of WT-AngII compared to WT-Sham and SMG4-AngII mice. Responsiveness to the contractile agonists, phenylephrine, 5-HT, and PGF 2 was significantly increased in endothelium-intact aortic rings from WT-AngII mice, but remained normal in aortae of SMG4-AngII mice. Following pretreatment with Rho-kinase inhibitor Y-27632, relative inhibition of contractility to 5-HT was equal in aortae from WT-AngII and SMG4-AngII-treated mice. With endothelial denudation, contractility to 5-HT was equally enhanced in aortae of WT-AngII and SMG4-AngII-treated mice. Interestingly, whereas acetylcholine stimulated relaxation was significantly decreased in aortic rings of WT-AngII mice, relaxation in rings from SMG4-AngII mice was not significantly different from WT or SMG4. These results demonstrate an interesting phenomenon whereby decreased expression of GLUT4 in vascular smooth muscle leads to an endothelial dysfunction that not only impairs relaxation, but also enhances contractility.


Sign in / Sign up

Export Citation Format

Share Document