scholarly journals Topological entropy of maps on the real line

2005 ◽  
Vol 153 (5-6) ◽  
pp. 735-746 ◽  
Author(s):  
J.S. Cánovas ◽  
J.M. Rodríguez
1987 ◽  
Vol 36 (3) ◽  
pp. 469-474 ◽  
Author(s):  
Bau-Sen Du

Let I be the unit interval [0, 1] of the real line. For integers k ≥ 1 and n ≥ 2, we construct simple piecewise monotonic expanding maps Fk, n in C0 (I, I) with the following three properties: (1) The positive integer n is an expanding constant for Fk, n for all k; (2) The topological entropy of Fk, n is greater than or equal to log n for all k; (3) Fk, n has periodic points of least period 2k · 3, but no periodic point of least period 2k−1 (2m+1) for any positive integer m. This is in contrast to the fact that there are expanding (but not piecewise monotonic) maps in C0(I, I) with very large expanding constants which have exactly one fixed point, say, at x = 1, but no other periodic point.


2020 ◽  
pp. 1-17
Author(s):  
BAOLIN HE

We study the continuity of topological entropy of general diffeomorphisms on line. First, we prove that the entropy map is continuous with respect to the strong $C^{0}$ -topology on the union of uniformly topologically hyperbolic diffeomorphisms contained in $\text{Diff}_{0}^{r}(\mathbb{R})$ (whose first derivative is uniformly away from zero), which is a $C^{0}$ -open and $C^{r}$ -dense subset of $\text{Diff}_{0}^{r}(\mathbb{R})$ , $r=1,2,\ldots ,\infty$ , and $\unicode[STIX]{x1D714}$ (real analytic). Second, we give some examples where entropy map is not continuous. Finally, we prove some results on the continuity of entropy of general diffeomorphisms on the (real) line.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Risong Li ◽  
Tianxiu Lu

In this paper, we study some chaotic properties of s-dimensional dynamical system of the form Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1, where ak∈Hk for any k∈1,2,…,s, s≥2 is an integer, and Hk is a compact subinterval of the real line ℝ=−∞,+∞ for any k∈1,2,…,s. Particularly, a necessary and sufficient condition for a cyclic permutation map Ψa1,a2,…,as=gsas,g1a1,…,gs−1as−1 to be LY-chaotic or h-chaotic or RT-chaotic or D-chaotic is obtained. Moreover, the LY-chaoticity, h-chaoticity, RT-chaoticity, and D-chaoticity of such a cyclic permutation map is explored. Also, we proved that the topological entropy hΨ of such a cyclic permutation map is the same as the topological entropy of each of the following maps: gj∘gj−1∘⋯∘g1l∘gs∘gs−1∘⋯∘gj+1, if j=1,…,s−1and gs∘gs−1∘⋯∘g1, and that Ψ is sensitive if and only if at least one of the coordinates maps of Ψs is sensitive.


2016 ◽  
pp. 3973-3982
Author(s):  
V. R. Lakshmi Gorty

The fractional integrals of Bessel-type Fractional Integrals from left-sided and right-sided integrals of fractional order is established on finite and infinite interval of the real-line, half axis and real axis. The Bessel-type fractional derivatives are also established. The properties of Fractional derivatives and integrals are studied. The fractional derivatives of Bessel-type of fractional order on finite of the real-line are studied by graphical representation. Results are direct output of the computer algebra system coded from MATLAB R2011b.


2000 ◽  
Vol 26 (1) ◽  
pp. 237
Author(s):  
Duszyński
Keyword(s):  

1982 ◽  
Vol 8 (1) ◽  
pp. 67 ◽  
Author(s):  
Thomson
Keyword(s):  

2020 ◽  
Vol 27 (2) ◽  
pp. 265-269
Author(s):  
Alexander Kharazishvili

AbstractIt is shown that any function acting from the real line {\mathbb{R}} into itself can be expressed as a pointwise limit of finite sums of periodic functions. At the same time, the real analytic function {x\rightarrow\exp(x^{2})} cannot be represented as a uniform limit of finite sums of periodic functions and, simultaneously, this function is a locally uniform limit of finite sums of periodic functions. The latter fact needs the techniques of Hamel bases.


Sign in / Sign up

Export Citation Format

Share Document