A comparative assessment of e-cigarette aerosols and cigarette smoke on in vitro endothelial cell migration

2017 ◽  
Vol 280 ◽  
pp. S235-S236
Author(s):  
Mark Taylor ◽  
Tomasz Jaunky ◽  
Katherine Hewitt ◽  
Frazer Lowe ◽  
Ian Fearon ◽  
...  
2017 ◽  
Vol 277 ◽  
pp. 123-128 ◽  
Author(s):  
Mark Taylor ◽  
Tomasz Jaunky ◽  
Katherine Hewitt ◽  
Damien Breheny ◽  
Frazer Lowe ◽  
...  

2021 ◽  
Author(s):  
Massimo Caruso ◽  
Rosalia Emma ◽  
Alfio Distefano ◽  
Sonja Rust ◽  
Konstantinos Poulas ◽  
...  

Cigarette smoking is associated with impairment of repair mechanisms necessary for vascular endothelium homeostasis. Reducing the exposure to smoke toxicants may result in the mitigation of the harmful effect on the endothelium and cardiovascular disease development. Previous investigations performed by the tobacco industries evaluated in vitro the effect of electronic cigarette (e-cig) compared to cigarette smoke demonstrating a significant reduction in endothelial cell migration inhibition following e-cig aerosol exposure. In the present study, we replicated one of these studies, evaluating the effects of cigarette smoke on endothelial cell migration compared to e-cig and heated tobacco products. We used a multi-center approach (ring-study) to verify the robustness and reliability of the results obtained in the replicated study. Consistently with the original study, we observed a substantial reduction of the effects of e-cig and tobacco heated products on endothelial cell migration compared to cigarette smoke. In conclusion, our study further confirms the importance of e-cig and tobacco heated products as a possible harm reduction strategy for cardiovascular diseases development in smokers.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


2020 ◽  
Author(s):  
Xiaolin Wang ◽  
Yongqian Bian ◽  
Yuejun Li ◽  
Jing Li ◽  
Congying Zhao ◽  
...  

Abstract Background: DARC (The Duffy antigen receptor for chemokines) is a kind of glycosylated membrane protein that binds to members of the CXC chemokine family associated with angiogenesis and has recently been reported to be implicated in diverse normal physiologic processes. This study aimed to investigate the involvement of DARC in angiogenesis, which is known to generate new capillary blood vessels from preexisting ones. Methods: HDMECs (Human dermal microvascular endothelial cells) were divided into two groups (DARC overexpression group, and control group). We used Brdu staining to detect cell proliferation, and wound healing assay to detect cell migration. Then tube formation assay were observed. Also, western blot and immunofluorescent staining were used to estimate the relationship between DARC and RhoA (Ras homolog gene family, member A). Results: HDMECs proliferation, migration, and tube formation were inhibited significantly when DARC was overexpressed intracellular. DARC impaired microfilament dynamics and intercellular connection in migrating cells, and RhoA activation underlay the effect of DARC on endothelial cell. Furthermore, DARC inhibited the formation of new capillaries in vitro. Conclusion: Our findings revealed the role of DARC in the angiogenic process and provided a novel mechanism for RhoA activation during endothelial cell migration and angiogenesis.


PLoS ONE ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. e0225462 ◽  
Author(s):  
Alina Miron ◽  
Daniele Spinozzi ◽  
Sorcha Ní Dhubhghaill ◽  
Jessica T. Lie ◽  
Silke Oellerich ◽  
...  

2011 ◽  
Vol 52 (3) ◽  
pp. 320-328 ◽  
Author(s):  
Xiangpeng ZHENG ◽  
Sumathy MOHAN ◽  
Randal A. OTTO ◽  
Mohan NATARAJAN

2010 ◽  
Vol 30 (16) ◽  
pp. 4035-4044 ◽  
Author(s):  
Sara Borniquel ◽  
Nieves García-Quintáns ◽  
Inmaculada Valle ◽  
Yolanda Olmos ◽  
Brigitte Wild ◽  
...  

ABSTRACT In damaged or proliferating endothelium, production of nitric oxide (NO) from endothelial nitric oxide synthase (eNOS) is associated with elevated levels of reactive oxygen species (ROS), which are necessary for endothelial migration. We aimed to elucidate the mechanism that mediates NO induction of endothelial migration. NO downregulates expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), which positively modulates several genes involved in ROS detoxification. We tested whether NO-induced cell migration requires PGC-1α downregulation and investigated the regulatory pathway involved. PGC-1α negatively regulated NO-dependent endothelial cell migration in vitro, and inactivation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is activated by NO, reduced NO-mediated downregulation of PGC-1α. Expression of constitutively active Foxo3a, a target for Akt-mediated inactivation, reduced NO-dependent PGC-1α downregulation. Foxo3a is also a direct transcriptional regulator of PGC-1α, and we found that a functional FoxO binding site in the PGC-1α promoter is also a NO response element. These results show that NO-mediated downregulation of PGC-1α is necessary for NO-induced endothelial migration and that NO/protein kinase G (PKG)-dependent downregulation of PGC-1α and the ROS detoxification system in endothelial cells are mediated by the PI3K/Akt signaling pathway and subsequent inactivation of the FoxO transcription factor Foxo3a.


2008 ◽  
Vol 99 (03) ◽  
pp. 576-585 ◽  
Author(s):  
Mathieu Provençal ◽  
Marisol Michaud ◽  
Édith Beaulieu ◽  
David Ratel ◽  
Georges-Étienne Rivard ◽  
...  

SummaryTissue factor pathway inhibitor (TFPI) is a plasma Kunitz-type serine protease inhibitor that is mainly known for its inhibition of tissue factor-mediated coagulation. In addition to its anticoagulant properties, emerging data show that TFPI may also regulate endothelial cell functions via a non-haemostatic pathway. In this work we demonstrate that at concentrations within the physiological range,TFPI inhibits both endothelial cell migration and their differentiation into capillary-like structures in vitro. These effects were specific to endothelial cells since no inhibitory effect was observed on the migration of tumor (glio- blastoma) cells. Inhibition of endothelial cell migration was correlated with a concomitant loss in cell adhesion,suggesting an alteration of focal adhesion complex integrity. Accordingly,we observed thatTFPI inhibited the phosphorylation of focal adhesion kinase and paxillin,two key proteins involved in the scaffolding of these complexes, and that this effect was specific to endothelial cells. These results suggest that TFPI influences the angiogenic process via a non-haemostatic pathway, by downregulating the migratory mechanisms of endothelial cells.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document