Erythroid adhesion molecules in sickle cell disease: Effect of hydroxyurea

2008 ◽  
Vol 15 (1-2) ◽  
pp. 39-50 ◽  
Author(s):  
J.-P. Cartron ◽  
J. Elion
Hematology ◽  
2007 ◽  
Vol 2007 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Marilyn J. Telen

AbstractA number of lines of evidence now support the hypothesis that vaso-occlusion and several of the sequelae of sickle cell disease (SCD) arise, at least in part, from adhesive interactions of sickle red blood cells, leukocytes, and the endothelium. Both experimental and genetic evidence provide support for the importance of these interactions. It is likely that future therapies for SCD might target one or more of these interactions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 362-362
Author(s):  
Eileen M. Finnegan ◽  
Aslihan Turhan ◽  
Jennifer Gaines ◽  
David E. Golan ◽  
Gilda Barabino

Abstract Microvascular vaso-occlusion in sickle cell disease is thought to involve adhesive interactions among erythrocytes (RBCs), leukocytes and vascular endothelial cells. Recent studies have demonstrated the presence of a significant inflammatory response in sickle cell disease, including changes in the cell surface adhesion molecules that mediate cell-cell interactions in the microvasculature. In this study, we used a parallel-plate flow chamber assay to determine the subpopulations of leukocytes that are involved in sickle leukocyte-RBC interactions. We also studied the effect of treatment with hydroxyurea (HU) on these adhesive interactions. Populations of monocytes, neutrophils (PMNs) and T cells were isolated by negative selection from the peripheral blood of untreated patients with sickle cell disease (SS), sickle patients receiving HU (SS-HU), and healthy control subjects (AA). Adhesive interactions involving these leukocyte subpopulations, human umbilical vein endothelial cells (HUVECs) pretreated with tumor necrosis factor-α (TNF-α ), and autologous RBCs were measured under a shear stress of 1 dyne/cm2. Compared to the corresponding cell populations from AA individuals, PMNs, monocytes, and T cells from SS individuals were significantly more adherent to TNF-α-treated HUVECs (774±59 vs. 502±27 cells/mm2, p=0.001; 533±66 vs. 348±36 cells/mm2, p=0.024; and 470±75 vs. 227±26 cells/mm2, p=0.009, respectively). HU therapy significantly decreased the adhesion of SS PMNs to HUVECs (774±59 cells/mm2 for SS vs. 604±36 for SS-HU, p=0.025). Compared to adherent AA leukocytes, adherent SS leukocytes exhibited greater participation in adhesive interactions with autologous RBCs (41±3% for SS vs. 27±3% for AA, p=0.002), and HU treatment decreased the fraction of leukocytes that captured autologous RBCs to the control level (29±3% for SS-HU, p=0.006 vs. SS). Compared to adherent PMNs from SS individuals, adherent PMNs from SS-HU individuals showed significantly reduced participation in the capture of RBCs (53±6% for SS vs. 35±5% for SS-HU, p=0.021). Although adherent T cells from SS individuals participated significantly more in RBC capture than adherent T cells from AA individuals (28±5% for SS vs. 10±2% for AA, p=0.007), HU therapy did not have a significant effect on this parameter (21±5% for SS-HU, p=0.373). Compared to AA leukocytes, SS leukocytes captured more RBCs per participating adherent leukocyte (2.8±0.2 vs. 1.9±0.1 RBCs/cell, p=0.001). HU therapy reduced the number of RBCs captured per PMN but not the number captured per T cell. Compared to AA T cells, SS T cells captured adherent RBCs for a significantly longer period of time (51±9 vs. 26±6 seconds, p=0.035). Our data suggest that sickle neutrophils, monocytes and T cells may all be involved in adhesive interactions with sickle RBCs. PMN-RBC and monocyte-RBC interactions appear to be more numerous than T cell-RBC interactions, although T cell-RBC interactions may be stronger. HU therapy appears to target PMN-RBC and monocyte-RBC interactions preferentially. Future studies will focus on the role of particular adhesion molecules in mediating these interactions and on the potential for therapeutic interventions targeting cell-cell adhesion.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4806-4806
Author(s):  
Clarissa E Johnson ◽  
Marilyn J. Telen

Abstract Vaso-occlusion is the major cause of morbidity and mortality in sickle cell disease. The tendency of red blood cells (RBCs) to adhere to extracellular matrix molecules and the vascular endothelium is believed to be a significant contributor to the vaso-occlusive process. Some published studies have shown that hydroxyurea decreases sickle (SS) RBC adhesion to some ligands, although the mechanism by which this occurs is not completely understood. SS RBCs demonstrate increased expression of several adhesion molecules, especially BCAM/LU, and also conserve functional signaling pathways that are associated with upregulation of adhesion. BCAM/LU mediates adhesion to the extracellular matrix protein laminin. We hypothesized that patients responsive to hydroxyurea (HU) therapy would exhibit reduced adhesion to laminin as well as a decrease in adhesion molecule expression. Our subjects included patients with Hb SS between the ages of 5 to 18. They were divided into three groups: children not receiving HU therapy (n = 3); children receiving HU therapy for over 6 months (n = 5), and children initially not receiving HU but who were initiating therapy at the time of study enrollment (n = 5). Adhesion to laminin was examined using a graduated height flow chamber to quantitate the adhesion of SS RBCs. Expression of adhesion molecules was analyzed by western blot and densitometry, using monoclonal antibody to BCAM/LU. We found that HU therapy was associated with significantly increased expression of BCAM/LU (HU: 145.8 ± 14.0 SEM; no HU: 60.8 ± 11.0 SEM densitometry units, p = .0014). This somewhat unexpected finding confirms results published earlier this year by Odievre et al. (2008). Adhesion to laminin was also increased for patients on HU (HU: 9.3 ± 5.9; no HU: .3 ± .3, p=.2), although this increase was not significant, given the variability in adhesion seen among patients and the small number of subjects. Nevertheless, the increase in adhesion corresponded to the increase in BCAM/LU expression. In contrast, adhesion to endothelial cells was decreased, although not significantly, in patients on HU (HU: 38.1 ± 38; no HU: 127.2 ± 122.5, p=.6). Our findings thus confirm earlier published data showing that HU increases the expression of BCAM/LU measured by flow cytometry and further shows that this increased expression is associated with increased adhesion to laminin but not to endothelial cells. Potential mechanisms by which HU affects adhesion molecule expression and activity merit further investigation, as does the physiologic role of these alterations. Comparison of results from patient-matched pre-treatment and post-treatment samples should also help define the effects of HU. Figure Figure


Blood ◽  
2010 ◽  
Vol 116 (12) ◽  
pp. 2152-2159 ◽  
Author(s):  
Pablo Bartolucci ◽  
Vicky Chaar ◽  
Julien Picot ◽  
Dora Bachir ◽  
Anoosha Habibi ◽  
...  

Abstract Sickle cell disease is characterized by painful vaso-occlusive crises during which abnormal interactions between erythroid adhesion molecules and vessel-wall proteins are thought to play a critical role. Hydroxyurea, the only drug with proven benefit in sickle cell disease, diminishes these interactions, but its mechanism of action is not fully understood. We report that, under hydroxyurea, expression of the unique erythroid laminin receptor Lu/BCAM was increased, but red blood cell adhesion to laminin decreased. Because Lu/BCAM phosphorylation is known to activate cell adhesion to laminin, it was evaluated and found to be dramatically lower in hydroxyurea-treated patients. Analysis of the protein kinase A pathway showed decreased intracellular levels of the upstream effector cyclic adenosine monophosphate during hydroxyurea treatment. Using a cellular model expressing recombinant Lu/BCAM, we showed that hydroxyurea led to decreased intracellular cyclic adenosine monophosphate levels and diminished Lu/BCAM phosphorylation and cell adhesion. We provide evidence that hydroxyurea could reduce abnormal sickle red blood cell adhesion to the vascular wall by regulating the activation state of adhesion molecules independently of their expression level.


2018 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Charles Antwi-Boasiako ◽  
John Ahenkorah ◽  
Eric Donkor ◽  
Bartholomew Dzudzor ◽  
Gifty Dankwah ◽  
...  

Nitric Oxide (NO) and soluble adhesion molecules are promising biomarkers, which predict endothelial dysfunction in sickle cell disease (SCD). Several studies have investigated the relationship between NO (as well as its metabolites) and endothelial adhesion molecules in SCD. However, these studies were done mainly in the developed world, and it is difficult to extrapolate the findings to SCD populations in other geographical regions such as Africa due to significant disparities in the results. The aim of the current study was to determine the correlation between levels of nitric oxide metabolites (NOx) and adhesion molecules in SCD patients in a tertiary hospital in Ghana. A case control cross-sectional study involving 100 SCD (made up of HbSS and HbSC patients) and 60 healthy controls was conducted. Concentrations of NOx and soluble endothelial adhesion molecules (ICAM-1, VCAM-1 and E-selectin) were measured in all the study participants (n = 160) by the Griess reagent system and enzyme-linked immunosorbent assay (ELISA). Correlation analysis was performed to determine a possible link between the variables. Levels of soluble adhesion molecules were higher in the HbSS patients. Correlation of NOx with ICAM-1 almost approached significance (r = 0.565, p = 0.058) in the HbSS patients. There were no correlations between NOx and E-selectin in both HbSS and HbSC patients. There were no significant correlations between NOx and VCAM-1 in all the study participants (p > 0.05). Of the soluble adhesion molecules, ICAM-1 showed a significant positive correlation with VCAM-1 in the HbSC patients. There were no significant differences between the adhesion molecules and the age of participants in the various study groups. Whether or not a significant correlation exists between NOx and soluble adhesion molecules may not depend on the sickle cell genotype. The expression of adhesion molecules may not depend on age.


2007 ◽  
Vol 118 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ferit Akgül ◽  
Ergün Seyfeli ◽  
İsmet Melek ◽  
Taşkin Duman ◽  
Tunzale Seydaliyeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document