scholarly journals RNA-sequencing of IDH-wild-type glioblastoma with chromothripsis identifies novel gene fusions with potential oncogenic properties

2021 ◽  
Vol 14 (1) ◽  
pp. 100884
Author(s):  
Franck Ah-Pine ◽  
Déborah Casas ◽  
Philippe Menei ◽  
Blandine Boisselier ◽  
Emmanuel Garcion ◽  
...  
2015 ◽  
Vol 148 (4) ◽  
pp. S-78
Author(s):  
Andrew Blum ◽  
Vinay Varadan ◽  
Yan Guo ◽  
Ann Marie Kieber-Emmons ◽  
Lakshmeswari Ravi ◽  
...  

2021 ◽  
pp. 153591
Author(s):  
Elena Gerhard-Hartmann ◽  
Christian Vokuhl ◽  
Sabine Roth ◽  
Tabea Steinmüller ◽  
Mathias Rosenfeld ◽  
...  

2018 ◽  
Vol 31 (9) ◽  
pp. 1346-1360 ◽  
Author(s):  
Xiao-tong Wang ◽  
Qiu-yuan Xia ◽  
Sheng-bing Ye ◽  
Xuan Wang ◽  
Rui Li ◽  
...  

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii349-iii350
Author(s):  
Torsten Pietsch ◽  
Christian Vokuhl ◽  
Gerrit H Gielen ◽  
Andre O von Bueren ◽  
Everlyn Dörner ◽  
...  

Abstract INTRODUCTION Glioblastoma in infancy and early childhood is characterized by a more favorable outcome compared to older children, a stable genome, and the occurrence of tyrosine kinase gene fusions that may represent therapeutic targets. METHODS 50 glioblastomas (GBM) with supratentorial location occurring in children younger than four years were retrieved from the archives of the Brain Tumor Reference Center, Institute of Neuropathology, University of Bonn. DNA and RNA were extracted from FFPE tumor samples. Gene fusions were identified by FISH using break-apart probes for ALK, NTRK1, -2, -3, ROS1 and MET, Molecular Inversion Probe (MIP) methodology, and targeted RNA sequencing. RESULTS 37 supratentorial GBM occurred in the first year of life, 13 GBM between one and four years. 18 cases showed fusions of ALK to different fusion partners; all occurred in the first year of life (18/37 cases, 48.6%). Fusions of ROS1 were found in 5, MET in 3, NTRK1, -2, -3 in 10 cases. 12 cases showed no and two novel fusions. The different methods led to comparable results; targeted RNA sequencing was not successful in a fraction of cases. Break-apart FISH led to reliable results on the next day, MIP technology represented the most sensitive method for analysis of FFPE samples. CONCLUSIONS Gene fusions involving the tyrosine kinase genes ALK, MET, ROS1 and NTRK1, -2, -3 occurred in 72% of glioblastomas of children younger than four years; the most frequent were ALK fusions occurring in infant GBM. DNA based MIP technology represented the most robust and sensitive assay.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii112-ii112
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Krishna Bojja ◽  
Tuan Tran M ◽  
Huma Shehwana ◽  
...  

Abstract The brain tumor immune microenvironment (TIME) continuously evolves during glioma progression and a comprehensive understanding of the glioma-centric immune cell repertoire beyond a priori cell types and/or states is uncharted. Consequently, we performed single-cell RNA-sequencing on ~123,000 tumor-derived immune cells from 17-pathologically stratified, IDH (isocitrate dehydrogenase)-differential primary, recurrent human gliomas, and non-glioma brains. Our analysis delineated predominant 34-myeloid cell clusters (~75%) over 28-lymphoid cell clusters (~25%) reflecting enormous heterogeneity within and across gliomas. The glioma immune diversity spanned functionally imprinted phagocytic, antigen-presenting, hypoxia, angiogenesis and, tumoricidal myeloid to classical cytotoxic lymphoid subpopulations. Specifically, IDH-mutant gliomas were enriched for brain-resident microglial subpopulations in contrast to enhanced bone barrow-derived infiltrates in IDH-wild type, especially in a recurrent setting. Microglia attrition in IDH-wild type -primary and -recurrent gliomas were concomitant with invading monocyte-derived cells with semblance to dendritic cell and macrophage/microglia like transcriptomic features. Additionally, microglial functional diversification was noted with disease severity and mostly converged to inflammatory states in IDH-wild type recurrent gliomas. Beyond dendritic cells, multiple antigen-presenting cellular states expanded with glioma severity especially in IDH-wild type primary and recurrent- gliomas. Furthermore, we noted differential microglia and dendritic cell inherent antigen presentation axis viz, osteopontin, and classical HLAs in IDH subtypes and, glioma-wide non-PD1 checkpoints associations in T cells like Galectin9 and Tim-3. As a general utility, our immune cell deconvolution approach with single-cell-matched bulk RNA sequencing data faithfully resolved 58-cell states which provides glioma specific immune reference for digital cytometry application to genomics datasets. Resultantly, we identified prognosticator immune cell-signatures from TCGA cohorts as one of many potential immune responsiveness applications of the curated signatures for basic and translational immune-genomics efforts. Thus, we not only provide an unprecedented insight of glioma TIME but also present an immune data resource that can be exploited to guide pragmatic glioma immunotherapy designs.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A576-A576
Author(s):  
Pravesh Gupta ◽  
Minghao Dang ◽  
Krishna Bojja ◽  
Huma Shehwana ◽  
Tuan Tran ◽  
...  

BackgroundBrain immunity is largely myeloid cell dominated rather than lymphoid cells in healthy and diseased state including malignancies of glial origins called as gliomas. Despite this skewed myeloid centric immune contexture, immune checkpoint and T cell based therapeutic modalities are generalizably pursued in gliomas ignoring the following facts i) T cells are sparse in tumor brain ii) glioma patients are lymphopenic iii) gliomas harbor abundant and highly complex myeloid cell repertoire. We recognized these paradoxes pertaining to fundamental understanding of constituent immune cells and their functional states in the tumor immune microenvironment (TIME) of gliomas, which remains elusive beyond a priori cell types and/or states.MethodsTo dissect the TIME in gliomas, we performed single-cell RNA-sequencing on ~123,000 tumor-derived sorted CD45+ leukocytes from fifteen genomically classified patients comprising IDH-mutant primary (IMP; n=4), IDH-mutant recurrent (IMR; n=4), IDH-wild type primary (IWP; n=3), or IDH-wild type recurrent (IWR; n=4) gliomas (hereafter referred as glioma subtypes) and two non-glioma brains (NGBs) as controls.ResultsUnsupervised clustering analyses delineated predominant 34-myeloid cell clusters (~75%) over 28-lymphoid cell clusters (~25%) reflecting enormous heterogeneity within and across glioma subtypes. The glioma immune diversity spanned functionally imprinted phagocytic, antigen-presenting, hypoxia, angiogenesis and, tumoricidal myeloid to classical cytotoxic lymphoid subpopulations. Specifically, IDH-mutant gliomas were predominantly enriched for brain-resident microglial subpopulations in contrast to enriched bone barrow-derived infiltrates in IDH-wild type especially in a recurrent setting. Microglia attrition in IWP and IWR gliomas were concomitant with invading monocyte-derived cells with semblance to dendritic cell and macrophage like transcriptomic features. Additionally, microglial functional diversification was noted with disease severity and mostly converged to inflammatory states in IWR gliomas. Beyond dendritic cells, multiple antigen-presenting cellular states expanded with glioma severity especially in IWP and IWR gliomas. Furthermore, we noted differential microglia and dendritic cell inherent antigen presentation axis viz, osteopontin, and classical HLAs in IDH subtypes and, glioma-wide non-PD1 checkpoints associations in T cells like Galectin9 and Tim-3. As a general utility, our immune cell deconvolution approach with single-cell-matched bulk RNA sequencing data faithfully resolved 58-cell states which provides glioma specific immune reference for digital cytometry application to genomics datasets.ConclusionsAltogether, we identified prognosticator immune cell-signatures from TCGA cohorts as one of many potential immune responsiveness applications of the curated signatures for basic and translational immune-genomics efforts. Thus, we not only provide an unprecedented insight of glioma TIME but also present an immune data resource that can be exploited for immunotherapy applications.Ethics ApprovalThe brain tumor/tissue samples were collected as per MD Anderson internal review board (IRB)-approved protocol numbers LAB03-0687 and, LAB04-0001. One non-tumor brain tissue sample was collected from patient undergoing neurosurgery for epilepsy as per Baylor College of Medicine IRB-approved protocol number H-13798. All experiments were compliant with the review board of MD Anderson Cancer Center, USA.ConsentWritten informed consent was obtained from the patient for publication of this abstract and any accompanying images. A copy of the written consent is available for review by the Editor of this journal


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 663
Author(s):  
Sudthana Khlaimongkhon ◽  
Sriprapai Chakhonkaen ◽  
Keasinee Tongmark ◽  
Numphet Sangarwut ◽  
Natjaree Panyawut ◽  
...  

Rice (Oryza sativa L.) is one of the most important food crops, providing food for nearly half of the world population. Rice grain yields are affected by temperature changes. Temperature stresses, both low and high, affect male reproductive development, resulting in yield reduction. Thermosensitive genic male sterility (TGMS) rice is sterile at high temperature and fertile at low temperature conditions, facilitating hybrid production, and is a good model to study effects of temperatures on male development. Semithin sections of the anthers of a TGMS rice line under low (fertile) and high (sterile) temperature conditions showed differences starting from the dyad stage, suggesting that genes involved in male development play a role during postmeiotic microspore development. Using RNA sequencing (RNA-Seq), transcriptional profiling of TGMS rice panicles at the dyad stage revealed 232 genes showing differential expression (DEGs) in a sterile, compared to a fertile, condition. Using qRT-PCR to study expression of 20 selected DEGs using panicles of TGMS and wild type rice plants grown under low and high temperature conditions, revealed that six out of the 20 selected genes may be unique to TGMS, while the other 14 genes showed common responses to temperatures in both TGMS and wild-type rice plants. The results presented here would be useful for further investigation into molecular mechanisms controlling TGMS and rice responses to temperature alteration.


Sign in / Sign up

Export Citation Format

Share Document