scholarly journals Curcumin derivative 1, 2-bis [(3E, 5E)-3, 5-bis [(2-chlorophenyl) methylene]-4-oxo-1-piperidyl] ethane-1, 2-dione (ST03) induces mitochondria mediated apoptosis in ovarian cancer cells and inhibits tumor progression in EAC mouse model

2022 ◽  
Vol 15 (1) ◽  
pp. 101280
Author(s):  
Jinsha Koroth ◽  
Raghunandan Mahadeva ◽  
Febina Ravindran ◽  
Tanvi R Parashar ◽  
Vinay Teja ◽  
...  
2020 ◽  
Vol 40 (1) ◽  
Author(s):  
Nanumi Han ◽  
Delnur Anwar ◽  
Naoki Hama ◽  
Takuto Kobayashi ◽  
Hidefumi Suzuki ◽  
...  

Abstract Background Interleukin (IL)-34 acts as an alternative ligand for the colony-stimulating factor-1 receptor and controls the biology of myeloid cells, including survival, proliferation, and differentiation. IL-34 has been reported to be expressed in cancer cells and to promote tumor progression and metastasis of certain cancers via the promotion of angiogenesis and immunosuppressive macrophage differentiation. We have shown in our previous reports that targeting IL-34 in chemo-resistant tumors in vitro resulted in a remarkable inhibition of tumor growth. Also, we reported poor prognosis in patients with IL-34-expressing tumor. Therefore, blocking of IL-34 is considered as a promising therapeutic strategy to suppress tumor progression. However, the molecular mechanisms that control IL-34 production are still largely unknown. Methods IL-34 producing ovarian cancer cell line HM-1 was treated by bromodomain and extra terminal inhibitor JQ1. The mRNA and protein expression of IL-34 was evaluated after JQ1 treatment. Chromatin immunoprecipitation was performed to confirm the involvement of bromodomain-containing protein 4 (Brd4) in the regulation of the Il34 gene. Anti-tumor effect of JQ1 was evaluated in mouse tumor model. Results We identified Brd4 as one of the critical molecules that regulate Il34 expression in cancer cells. Consistent with this, we found that JQ1 is capable of efficiently suppressing the recruitment of Brd4 to the promotor region of Il34 gene. Additionally, JQ1 treatment of mice bearing IL-34-producing tumor inhibited the tumor growth along with decreasing Il34 expression in the tumor. Conclusion The results unveiled for the first time the responsible molecule Brd4 that regulates Il34 expression in cancer cells and suggested its possibility as a treatment target.


2021 ◽  
Author(s):  
Yali Fan ◽  
Jiandong Wang ◽  
Ziwei Fang ◽  
Stuart R Pierce ◽  
Lindsay West ◽  
...  

Abstract Background: ONC201 is a promising first-in-class small molecule that has been reported to have anti-neoplastic activity in various types of cancer through activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) as well as activation of mitochondrial caseinolytic protease P (ClpP).Methods: Our objective was to evaluate the effect of the ONC201 on (1) proliferation, cellular stress, apoptosis and invasion in human serous ovarian cancer (OC) cell lines, and (2) inhibition of tumor growth in a genetically engineered mouse model of high grade serous OC (K18-gT121+/-;p53fl/fl;Brca1fl/fl; KpB) under obese (high fat diet) and lean (low fat diet) conditions. Results: ONC201 significantly suppressed cell proliferation, induced arrest in G1 phase, and increased cellular stress and apoptosis, accompanied by dual inhibition of the AKT/mTOR/S6 and MAPK pathways in OC cells. ONC201 also resulted in inhibition of adhesion and invasion via epithelial–mesenchymal transition and reduction of VEGF expression. Pre-treatment with the anti-oxidant, N-acetylcysteine (NAC), reversed the ONC201-induced oxidative stress response, and prevented ONC201-reduced VEGF and cell invasion by regulating epithelial–mesenchymal transition protein expression. Knockdown of ClpP in ovarian cancer cells reduced ONC201 mediated the anti-tumor activity and cellular stress. Diet-induced obesity accelerated ovarian tumor growth in the KpB mouse model. ONC201 significantly suppressed tumor growth, and decreased serum VEGF production in obese and lean mice, leading to a decrease in tumoral expression of Ki-67, VEGF and phosphorylation of p42/44 and S6 and an increase in ClpP and DRD5, as assessed by immunohistochemistry. Additionally, ONC201 exhibited greater anti-tumor efficacy in obese (75%) as compared to lean (65%) mice. InterpretationConclusions: These results suggest that ONC206 may be a promising therapeutic agent to be explored in future clinical trials in high grade serous OC.


2020 ◽  
Vol 20 (1) ◽  
pp. 85-95
Author(s):  
Zhiqing Huang ◽  
Eiji Kondoh ◽  
Zachary R. Visco ◽  
Tsukasa Baba ◽  
Noriomi Matsumura ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 197
Author(s):  
R.-E. Go ◽  
K.-C. Choi

Previous studies suggest that environmental factors, such as high levels of meat consumption, caffeine, cigarette smoking, and endocrine disrupting chemicals (EDC), may enhance a high risk of ovarian cancer. Cytochrome P450 (CYP) 1A1 may play a major role in metabolic activation of procarcinogens to carcinogens. For example, polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) occur by pyrolysis of fossil fuels and flow into the body by organic matter, such as tobacco leaves and contaminated water by pesticides. 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD) is a commonplace pollutant and promoter of carcinogenesis as the most potent substance. In this study, we examined the effects of 17β-oestradiol (E2), TCDD, and TCDD in the presence of E2 on the expressions of CYP1A1, CYP1B1, and aryl hydrocarbon receptor (AhR) by RT–PCR analysis and Western blot analysis. In addition, the cell viability by TCDD and E2 were examined in BG-1 human ovarian cancer cells by MTT assay. To evaluate the cell viability, BG-1 cells were cultured with a negative control (0.1% DMSO), E2 (1 × 10–9 M) or TCDD (10–6–10–8 M). E2 markedly increased BG-1 cell viability ~5 times, and TCDD also induced BG-1 cell viability highest at the concentration of 1 × 10–8 M compared to a control (0.1% DMSO) (P < 0.05). When respective treatment was co-treated with ICI 182 780, an ER antagonist, BG-1 cell viability was reversed to the level of a negative control. Although the mRNA expression of CYP1B1 was not altered by E2, TCDD, or TCDD plus E2, the transcriptional level of CYP1A1 appeared to be increased by E2 and TCDD in a time-dependent manner. When the cells were treated with TCDD plus E2, the mRNA level of CYP1A1 was more greatly increased than by only TCDD or E2 treatment. In xenograft mouse models transplanted with BG-1 cells, E2 treatment significantly increased the tumour mass formation ~6 times, and TCDD also induced tumour formation ~4 times compared to a vehicle (0.1% DMSO in PBS) during 8 weeks in this xenograted mouse model. In addition, TCDD plus E2 treatment also greatly induced ovarian tumour formation compared to only E2 treatment in this mouse model. Taken together, these results indicate that TCDD may induce ovarian cancer cell growth via CYP1A1 gene expression and have disruptive effect in oestrogen receptor (ER) expressing cells or tissues.


Oncotarget ◽  
2017 ◽  
Vol 8 (59) ◽  
pp. 100113-100127 ◽  
Author(s):  
Amanda L. Jackson ◽  
Wenchuan Sun ◽  
Joshua Kilgore ◽  
Hui Guo ◽  
Ziwei Fang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Febina Ravindran ◽  
Jinsha Koroth ◽  
Meghana Manjunath ◽  
Suchitra Narayan ◽  
Bibha Choudhary

AbstractOvarian cancers are among the fatal malignancies affecting women globally, mainly due to their metastatic and chemoresistant nature. In this study, we report a potent curcumin derivative ST09 effective against ovarian cancers. Prior in-vitro studies with ST09 drug showed cytotoxicity in tumorigenic cells compared to normal cells and in-vivo, significant tumor reduction was observed with least systemic toxicity. ST09 induced cytotoxicity in the ovarian cancer cells triggering mitochondria-mediated intrinsic apoptotic pathway. Delving deeper to understand the underlying molecular mechanisms involved in ovarian cancer pathogenesis, we identified an inverse correlation of miR-199a-5p with DDR1, a collagen receptor with receptor tyrosine kinase activity. The ST09 treatment in ovarian cancer cell lines resulted in the deregulation of the miR-199a-5p/DDR1 axis, conferring tumor-suppressive functions. We established DDR1 to be a direct target of miR-199a-5p and that ST09-induced DDR1 loss in these ovarian cancer cells resulted in the inactivation of its downstream MMP activation, migration, EMT, and prosurvival NF-κB pathway. Overall this study demonstrates ST09, a potent drug candidate for ovarian cancer treatment which exhibits anti-invasive and migrastatic properties.


Sign in / Sign up

Export Citation Format

Share Document