CD28 Superagonist Antibody Treatment Attenuated Obliterative Bronchiolitis in Rat Allo-Orthotopic Tracheal Transplantation by Preferentially Expanding Foxp3-Expressing Regulatory T Cells

2012 ◽  
Vol 44 (4) ◽  
pp. 1060-1066 ◽  
Author(s):  
Q. Shi ◽  
Y. Niu ◽  
H. Cao ◽  
X. Zhou ◽  
S. Jiang ◽  
...  
2021 ◽  
Author(s):  
Alexandra Laine ◽  
Ossama Labiad ◽  
Hector Hernandez-Vargas ◽  
Sebastien This ◽  
Amélien Sanlaville ◽  
...  

Abstract Among the strategies allowing cancer cells to escape the immune system, the presence of TGF-b in the tumor micro-environment is one of the most potent. However, TGF-b is secreted in an inactive form and mechanisms responsible for its activation within the tumor remain unknown. Here, we demonstrate that regulatory T cells (Tregs) compose the main cells expressing the b8 chain of avb8 integrin (Itgb8) in the tumors and that the Itgb8pos Treg population activates TGF-b produced by the cancer cells and stored in the tumor micro-environment. Itgb8 ablation in Tregs impaired TGF-b signaling in T lymphocytes present in the tumor but not in the tumor draining lymph nodes. The cytotoxic function of CD8pos T lymphocytes infiltrating the tumors was subsequently exacerbated leading to an efficient control of the tumor growth. Similar observations were made in patient tumors after anti-Itgb8 antibody treatment. Thus, this study reveals that Tregs work in concert with cancer cells to produce bioactive-TGF-b and create a powerful-immunosuppressive micro-environment.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 568-568
Author(s):  
Krystalyn E. Hudson ◽  
James C. Zimring

Introduction: Loss of humoral tolerance to red blood cell (RBC) antigens may lead to the generation of pathogenic autoantibodies and result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. Failure of tolerance to RBC antigens occurs with considerable frequency (1-3 cases/1,000 adults) and prevalence of AIHA is as high as 30% in persons with compromised B and/or T cell tolerance mechanisms. However, RBC-specific tolerance mechanisms are poorly understood. To elucidate the immune tolerances to RBC autoantigens, we utilized HOD mice. The HOD mouse expresses an RBC-specific transgene consisting of hen egg lysozyme (HEL), ovalbumin (OVA), and Duffy. Using the HOD model, we previously demonstrated B cell tolerance to RBC-specific HOD antigen is incomplete; however, T cell tolerance is stringent. HOD mice have similar detectable frequencies of HOD-specific CD4+ T cells compared to B6 mice. Although present, autoreactive HOD-specific CD4+ T cells are non-functional. Circumventing T cell tolerance by adoptive transfer, HOD mice make high titer anti-HOD autoantibodies in vivo. Thus, despite the presence of autoreactive B cells, no HOD-reactive antibodies are detectable unless CD4+ T cells are given, indicating T cell tolerance is a stopgap to autoimmunity. Methods: Leukocytes from C57BL/6 (B6) and HOD mice were harvested and OVA-specific CD4+ T cell responses were assessed by tetramer-pulldown assays with pooled tetramers I-Ab-OVA 329-337/326-334. Isolated cells were stained for surface and intracellular markers and analyzed via flow cytometry. For in vivo analysis, mice were treated with 300ug anti-CD25 (clone PC-61) depleting antibody or isotype control; a subset of antibody-treated mice was immunized with OVA/CFA. Antibodies bound to HOD RBCs were determined by direct antibody test. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Results: Tetramer pull-down assays revealed similar numbers of OVA-reactive CD4+ T cells from HOD and B6 mice (mean 56 and 40, respectively, p = 0.3). However, cell surface and intracellular marker staining demonstrated that HOD mice had higher numbers of OVA-tetramer reactive CD4+ T cells that express regulatory markers CD25 and FoxP3, and exhaustion marker PD1 as compared to control B6 mice. Inhibitory CTLA4 expression was not detectable on OVA-reactive CD4+ T cells from HOD or B6 mice. To test whether regulatory T cells were required for RBC-specific immune tolerance, HOD and B6 mice were treated with CD25 depleting antibody or isotype control antibody. Anti-CD25 antibody treated mice had a significant reduction of CD25+ cells 4 days post treatment (p < 0.001, 2 independent experiments). Similarly, there was a significant reduction in FoxP3+CD25+CD4+ T cells (Tregs) in anti-CD25 treated mice (p < 0.001), compared to isotype. Mice received weekly injections of anti-CD25 or isotype antibody to maintain depletion for one month. A subset of mice received an OVA/CFA immunization. Sustained CD25+ depletion did not result in anti-HOD autoantibody generation. Further, there was no change in the endogenous frequency of OVA-reactive CD4+ T cells between HOD and B6 mice, regardless of antibody treatment. Similarly, HOD mice treated with depletion (or isotype) antibody and immunized with OVA/CFA did not make detectable anti-HOD autoantibodies. Consistent with lack of detectable autoantibodies, no expansion of OVA-tetramer reactive CD4+ T cells was observed in HOD mice. In contrast, B6 mice (treated with anti-CD25 or isotype antibody) had a detectable expansion of OVA-specific CD4+ T cells as a result of immunization. Conclusions: The data demonstrate a phenotypic difference between the OVA-reactive CD4+ T cells from HOD and B6 mice, with an increase in number of Tregs detectable in HOD mice. Administration of anti-CD25 antibody significantly reduced the number of overall CD25+ cells and Tregs. Prolonged depletion of these cellular subsets did not elicit autoantibodies in HOD mice. Further, immunization of CD25 depleted mice with a strong immune stimulus (OVA/CFA, known to expand OVA-reactive T cells in B6 mice), did not induce anti-HOD autoantibodies nor did it expand OVA-specific autoreactive CD4+ T cells in HOD mice. Together, these data demonstrate that CD25+ cells are not required for the maintenance of RBC-specific T cell tolerance and suggest a role for other regulatory mechanisms. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Jie Zhao ◽  
Ying Liu ◽  
Jian-Nan Hu ◽  
Min Peng ◽  
Ning Dong ◽  
...  

Abstract Regulatory T cells (Tregs) play a crucial role in modulating the inflammatory response and participated in sepsis-related immune dysfunctions. However, little is known about the regulatory mechanisms by which Tregs are kept in check during immune responses. Here, we verified the simultaneous expression of interleukin-3 (IL-3) and its receptor (IL-3R) in Tregs. Then, by modulation of IL-3 expression via lentiviral transduction-mediated small interfering RNA, we demonstrated that IL-3 negatively regulated Tregs activity via an autocrine mechanism. Furthermore, we found that anti-IL-3 antibody treatment significantly diminished inflammatory cytokines and organ injury, and improved survival in septic mice, which was associated with enhanced Treg percentage and function. Collectively, these results suggest that IL-3 negatively regulates the activity of Tregs in a previously unrecognized autocrine manner, and plays an important role in the excessive inflammatory response in sepsis, which might be utilized as a therapeutic strategy for the treatment of complications in sepsis.


Blood ◽  
2010 ◽  
Vol 116 (14) ◽  
pp. 2484-2493 ◽  
Author(s):  
Qing Zhou ◽  
Meghan E. Munger ◽  
Steven L. Highfill ◽  
Jakub Tolar ◽  
Brenda J. Weigel ◽  
...  

Abstract Tumor-induced immune defects can weaken host immune response and permit tumor cell growth. In a systemic model of murine acute myeloid leukemia (AML), tumor progression resulted in increased regulatory T cells (Treg) and elevation of program death-1 (PD-1) expression on CD8+ cytotoxic T cells (CTLs) at the tumor site. PD-1 knockout mice were more resistant to AML despite the presence of similar percentage of Tregs compared with wild type. In vitro, intact Treg suppression of CD8+ T-cell responses was dependent on PD-1 expression by T cells and Tregs and PD-L1 expression by antigen-presenting cells. In vivo, the function of adoptively transferred AML-reactive CTLs was reduced by AML-associated Tregs. Anti–PD-L1 monoclonal antibody treatment increased the proliferation and function of CTLs at tumor sites, reduced AML tumor burden, and resulted in long-term survivors. Treg depletion followed by PD-1/PD-L1 blockade showed superior efficacy for eradication of established AML. These data demonstrated that interaction between PD-1 and PD-L1 can facilitate Treg-induced suppression of T-effector cells and dampen the antitumor immune response. PD-1/PD-L1 blockade coupled with Treg depletion represents an important new approach that can be readily translated into the clinic to improve the therapeutic efficacy of adoptive AML-reactive CTLs in advanced AML disease.


Circulation ◽  
2009 ◽  
Vol 120 (20) ◽  
pp. 1996-2005 ◽  
Author(s):  
Naoto Sasaki ◽  
Tomoya Yamashita ◽  
Masafumi Takeda ◽  
Masakazu Shinohara ◽  
Kenji Nakajima ◽  
...  

2009 ◽  
Vol 66 (4) ◽  
Author(s):  
Unsong Oh ◽  
Gregg Blevins ◽  
Caitlin Griffith ◽  
Nancy Richert ◽  
Dragan Maric ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A914-A914
Author(s):  
Andrew Rankin ◽  
Edwina Naik

BackgroundThe clinical success of PD-1- and CTLA-4- immune checkpoint inhibitors highlights the key contribution of immunosuppression to limiting effective anti-tumor responses. However, as many patients do not respond to anti-PD1 or CTLA4 therapy1-3 novel therapeutics that target additional immune-suppressive mechanisms are needed. Regulatory T cells (Tregs) inhibit immune responses in the tumor microenvironment via multiple suppressive mechanisms.4 5 Existing Treg-targeting agents lack specificity for intratumoral Tregs and can also deplete effector cells, a property that has likely contributed to the lack of clinical activity observed to date. CCR8 (C-C chemokine receptor 8) is selectively expressed on highly activated intratumoral Tregs, its high expression correlates with poor prognosis in multiple human tumor types6 7 and depletion of CCR8+ Tregs in preclinical models elicited potent anti-tumor activity. These observations provided rationale for the development of a CCR8-specific human depleting antibody.MethodsHuman FOXP3 and CCR8 expression was correlated across multiple tumor types using TCGA datasets and expression of CCR8 evaluated in primary tumor explants and PBMCs by flow cytometry. The efficacy of anti-CCR8 antibody treatment was evaluated in the MC38 and CT26 murine tumor models. The depletion of Tregs following anti-CCR8 treatment was assessed by flow cytometry. Flow cytometric-based binding assays were performed using cell lines expressing human or cynomolgus CCR8. Purified human NK cells were co-cultured with CCR8+ target cells and flow cytometry used to evaluate antibody-dependent killing activity.ResultsCCR8 expression was highly correlated with FoxP3 across multiple cancer subtypes and was low to absent on effector T cells. Importantly, CCR8 was not detected on any peripheral human leukocyte subset. In murine tumor models, anti-CCR8 antibody treatment reduced tumor growth in a dose- and Fc-gamma-receptor-dependent manner and resulted in complete regressions and the development of memory. Tumor shrinkage was associated with a reduction in intratumoral Tregs and increased representation of intratumoral CD8 T cells. FPA157 is a highly specific human and cynomolgus crossreactive CCR8 antibody that does not bind closely related chemokine receptors. FPA157 was engineered to enhance antibody-dependent cell-mediated cytotoxicity (eADCC) and elicited potent NK-mediated killing of target cells expressing CCR8 at levels observed on human intratumoralTregs.ConclusionsFPA157 is a CCR8-specific monoclonal antibody with eADCC activity that is being developed for the treatment of cancer. Depletion of CCR8+ Tregs induced substantial anti-tumor activity in pre-clinical models, thus supporting the clinical evaluation of FPA157 as a novel approach to alleviate immune suppression in the microenvironment of human solid tumors.ReferencesHellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, Borghaei H, Ramalingam SS, Brahmer J, Reck M, O’Byrne KJ, Geese WJ, Green G, Chang H, Szustakowski J, Bhagavatheeswaran P, Healey D, Fu Y, Nathan F, Paz-Ares L. Nivolumab plus Ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378(22):2093-2104.Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF, Smylie M, Dummer R, Hill A, Hogg D, Haanen J, Carlino MS, Bechter O, Maio M, Marquez-Rodas I, Guidoboni M, McArthur G, Lebbé C, Ascierto PA, Long GV, Cebon J, Sosman J, Postow MA, Callahan MK, Walker D, Rollin L, Bhore R, Hodi FS, Larkin J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017;377(14):1345-1356.Motzer RJ, Tannir NM, McDermott DF, Arén Frontera O, Melichar B, Choueiri TK, Plimack ER, Barthélémy P, Porta C, George S, Powles T, Donskov F, Neiman V, Kollmannsberger CK, Salman P, Gurney H, Hawkins R, Ravaud A, Grimm MO, Bracarda S, Barrios CH, Tomita Y, Castellano D, Rini BI, Chen AC, Mekan S, McHenry MB, Wind-Rotolo M, Doan J, Sharma P, Hammers HJ, Escudier B; CheckMate 214 Investigators. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018 Apr 5;378(14):1277-1290.Teng MW, Ngiow SF, von Scheidt B, McLaughlin N, Sparwasser T, Smyth MJ. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth [published correction appears in Cancer Res. 2010; 70(23):10014]. Cancer Res 2010;70(20):7800-7809.Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F, Roddie C, Henry JY, Yagita H, Wolchok JD, Peggs KS, Ravetch JV, Allison JP, Quezada SA. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 2013;210(9):1695-710.Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 2016;45(5):1122-1134.De Simone M, Arrigoni A, Rossetti G, Gruarin P, Ranzani V, Politano C, Bonnal RJP, Provasi E, Sarnicola ML, Panzeri I, Moro M, Crosti M, Mazzara S, Vaira V, Bosari S, Palleschi A, Santambrogio L, Bovo G, Zucchini N, Totis M, Gianotti L, Cesana G, Perego RA, Maroni N, Pisani Ceretti A, Opocher E, De Francesco R, Geginat J, Stunnenberg HG, Abrignani S, Pagani M. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 2016;45(5):1135-1147.


Sign in / Sign up

Export Citation Format

Share Document