Regulatory T Cells Are Not Required for Prevention of RBC-Specific Autoantibody Generation

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 568-568
Author(s):  
Krystalyn E. Hudson ◽  
James C. Zimring

Introduction: Loss of humoral tolerance to red blood cell (RBC) antigens may lead to the generation of pathogenic autoantibodies and result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. Failure of tolerance to RBC antigens occurs with considerable frequency (1-3 cases/1,000 adults) and prevalence of AIHA is as high as 30% in persons with compromised B and/or T cell tolerance mechanisms. However, RBC-specific tolerance mechanisms are poorly understood. To elucidate the immune tolerances to RBC autoantigens, we utilized HOD mice. The HOD mouse expresses an RBC-specific transgene consisting of hen egg lysozyme (HEL), ovalbumin (OVA), and Duffy. Using the HOD model, we previously demonstrated B cell tolerance to RBC-specific HOD antigen is incomplete; however, T cell tolerance is stringent. HOD mice have similar detectable frequencies of HOD-specific CD4+ T cells compared to B6 mice. Although present, autoreactive HOD-specific CD4+ T cells are non-functional. Circumventing T cell tolerance by adoptive transfer, HOD mice make high titer anti-HOD autoantibodies in vivo. Thus, despite the presence of autoreactive B cells, no HOD-reactive antibodies are detectable unless CD4+ T cells are given, indicating T cell tolerance is a stopgap to autoimmunity. Methods: Leukocytes from C57BL/6 (B6) and HOD mice were harvested and OVA-specific CD4+ T cell responses were assessed by tetramer-pulldown assays with pooled tetramers I-Ab-OVA 329-337/326-334. Isolated cells were stained for surface and intracellular markers and analyzed via flow cytometry. For in vivo analysis, mice were treated with 300ug anti-CD25 (clone PC-61) depleting antibody or isotype control; a subset of antibody-treated mice was immunized with OVA/CFA. Antibodies bound to HOD RBCs were determined by direct antibody test. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Results: Tetramer pull-down assays revealed similar numbers of OVA-reactive CD4+ T cells from HOD and B6 mice (mean 56 and 40, respectively, p = 0.3). However, cell surface and intracellular marker staining demonstrated that HOD mice had higher numbers of OVA-tetramer reactive CD4+ T cells that express regulatory markers CD25 and FoxP3, and exhaustion marker PD1 as compared to control B6 mice. Inhibitory CTLA4 expression was not detectable on OVA-reactive CD4+ T cells from HOD or B6 mice. To test whether regulatory T cells were required for RBC-specific immune tolerance, HOD and B6 mice were treated with CD25 depleting antibody or isotype control antibody. Anti-CD25 antibody treated mice had a significant reduction of CD25+ cells 4 days post treatment (p < 0.001, 2 independent experiments). Similarly, there was a significant reduction in FoxP3+CD25+CD4+ T cells (Tregs) in anti-CD25 treated mice (p < 0.001), compared to isotype. Mice received weekly injections of anti-CD25 or isotype antibody to maintain depletion for one month. A subset of mice received an OVA/CFA immunization. Sustained CD25+ depletion did not result in anti-HOD autoantibody generation. Further, there was no change in the endogenous frequency of OVA-reactive CD4+ T cells between HOD and B6 mice, regardless of antibody treatment. Similarly, HOD mice treated with depletion (or isotype) antibody and immunized with OVA/CFA did not make detectable anti-HOD autoantibodies. Consistent with lack of detectable autoantibodies, no expansion of OVA-tetramer reactive CD4+ T cells was observed in HOD mice. In contrast, B6 mice (treated with anti-CD25 or isotype antibody) had a detectable expansion of OVA-specific CD4+ T cells as a result of immunization. Conclusions: The data demonstrate a phenotypic difference between the OVA-reactive CD4+ T cells from HOD and B6 mice, with an increase in number of Tregs detectable in HOD mice. Administration of anti-CD25 antibody significantly reduced the number of overall CD25+ cells and Tregs. Prolonged depletion of these cellular subsets did not elicit autoantibodies in HOD mice. Further, immunization of CD25 depleted mice with a strong immune stimulus (OVA/CFA, known to expand OVA-reactive T cells in B6 mice), did not induce anti-HOD autoantibodies nor did it expand OVA-specific autoreactive CD4+ T cells in HOD mice. Together, these data demonstrate that CD25+ cells are not required for the maintenance of RBC-specific T cell tolerance and suggest a role for other regulatory mechanisms. Disclosures No relevant conflicts of interest to declare.

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3441-3441
Author(s):  
Sut Ling Wong ◽  
Amanda L Richards ◽  
James C. Zimring ◽  
Krystalyn E. Hudson

Abstract Background: Elucidating the mechanisms of T cell tolerance towards autoantigens can be critical for therapeutic efforts to re-establish tolerance in autoimmune diseases or break tolerance in tumor immunotherapy. Tolerance mechanisms have been well described towards tissue-restricted antigens and include deletion, anergy, or regulatory cells; however, T cell tolerance mechanisms against RBC-restricted antigens are poorly understood. Herein, we utilized the HOD mouse to investigate T cell tolerance mechanisms to RBC-specific antigens. The HOD mouse expresses a triple fusion protein consisting of hen egg lysosyme (H EL), ovalbumin (O VA), and human blood group molecule, D uffy (HOD) driven by a RBC-specific promoter. A TCR transgenic mouse that recognizes an OVA peptide presented by MHI II (OT-II mouse) was crossed with the HOD mouse to allow analysis of T cells autoreactive to an RBC specific antigen. Methods: To evaluate central tolerance, OVA specific T cells were analyzed from thymii from 6-8 weeks old OT-II+ HOD+ mice (OT-II+ HOD- littermates were used as controls for T cells in absence of autoantigen). Splenic CD4+ T cells from both OT-II+ HOD+ and control OT-II+ HOD- mice were CFSE-labeled and analyzed 1) in vitro by co-culturing with splenocytes pulsed with whole soluble OVA or 2) in vivo by adoptively transferring into B6.Thy1.1 recipients, followed by transfusion of HOD RBC. Proliferative responses of cells were measured by CFSE dilution analyzed with flow cytometry. Results: There is no detectable autoantibody production against the HOD antigen in OT-II+ HOD+ mice. In the thymus, similar frequencies and total nbers of OVA-specific CD4+ single positive (SP) T cells were observed between OT-II+ HOD+ and OT-II+ HOD- mice. This was not because OT-II+ HOD+ mice were incapable of deleting autoreactive T cells, since OT-II+ HOD+ mice i.v injected with soluble whole OVA, known to induce deletion, had a significant decrease in the CD4+ SP T cells. Phenotypic analysis of mature CD4+ T cells in the spleen revealed fewer OVA-specific CD4+ T cells in OT-II+ HOD+ compared to OT-II+ HOD- mice (p=0.009). The CD4+ T cells present in OT-II+ HOD+ expressed higher levels of markers associated with T cell activation and proliferation such as CD69, CD44, Ki-67 and also decreased levels of L-selection. Moreover, these cells expressed elevated levels of markers associated with T cell anergy and tolerance, including PD-1, CD5 and LAG-3. Finally, OT-II+ HOD+ mice exhibited increased numbers of CD25+ Foxp3+ Tregs (p=0.007). In 2 of 2 experiments (3 mice/group), adoptively transferred CD4+ cells from OT-II+ HOD+ did not proliferate in response to HOD RBCs while OT-II+ HOD- exhibited robust proliferation. In contrast to the in vivo results, CD4+ cells from OT-II+ HOD+ proliferated when co-cultured with splenocytes + whole soluble OVA in vitro. Conclusions : We describe a model in which regulation of CD4+ T cells autoreactive for self-RBC antigen can be studied. Although a significant number of RBC autoreactive T cells are present, and appear to have seen antigen, been activated (i.e. increased CD69 and CD44), and proliferated (increased Ki-67); these cells are nevertheless anergic as indicated by adoptive transfer studies. The ability to proliferate in vitro but not in vivo in response to HOD RBC suggests that removal from the normal in vivo environment removes inhibitory factors, consistent with peripheral tolerance mechanisms in vivo. Indeed, increased Tregs were observed in autoreactive mice compared to control mice. In contrast, thymic deletion seems to play little or no role in this case. Together, these findings identify peripheral and not central tolerance as major control mechanisms of RBC autoreactive CD4+ T cells. Mechanisms may include alterations in expression of PD-1, CD5, and LAG-3 by autoreactive cells. Disclosures Zimring: BloodworksNW: Patents & Royalties: Patent Application filed on technology in this abstract - no royalties; Immucor Inc.: Research Funding.


2009 ◽  
Vol 107 (1) ◽  
pp. 199-203 ◽  
Author(s):  
A. Schildknecht ◽  
S. Brauer ◽  
C. Brenner ◽  
K. Lahl ◽  
H. Schild ◽  
...  

2021 ◽  
Author(s):  
Ryosuke Hiwa ◽  
Hailyn V. Nielsen ◽  
James L. Mueller ◽  
Julie Zikherman

ABSTRACTThe NR4A family of orphan nuclear receptors (Nr4a1-3) plays redundant roles upstream of Foxp3 to establish and maintain Treg identity; deletion of multiple family members in the thymus results in Treg deficiency and a severe inflammatory disease. Consequently, it has been challenging to isolate the functions of this family in other immune cells. Here we take advantage of a competitive bone marrow chimera strategy, coupled with conditional genetic tools, to rescue Treg homeostasis and unmask such functions. Unexpectedly, chimeras harboring Nr4a1−/− Nr4a3−/− (DKO) bone marrow develop autoantibodies and a systemic inflammatory disease despite a replete Treg compartment of largely wild-type origin. This disease differs qualitatively from that seen with Treg-deficiency and is B cell-extrinsic. Negative selection of DKO thymocytes is profoundly impaired in a cell-intrinsic manner. Consistent with escape of self-reactive T cells into the periphery, DKO T cells with functional and phenotypic features of anergy accumulate in chimeric mice. Despite this, DKO T cells exhibit enhanced IL-2 production, implying a cell-intrinsic role for the NR4A family in peripheral T cell tolerance. These studies reveal roles for the NR4A family in multiple layered T cell tolerance mechanisms and demonstrate that each is essential to preserve immune homeostasis.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 318
Author(s):  
William D. Coley ◽  
Yongge Zhao ◽  
Charles J. Benck ◽  
Yi Liu ◽  
Chie Hotta-Iwamura ◽  
...  

Background: We previously identified the transcriptional regulator Zbtb32 as a factor that can promote T cell tolerance in the Non-Obese Diabetic (NOD) mouse, a model of Type 1 diabetes. Antigen targeted to DCIR2+ dendritic cells (DCs) in vivo inhibited both diabetes and effector T cell expansion in NOD mice. Furthermore, Zbtb32 was preferentially induced in autoreactive CD4 T cells stimulated by these tolerogenic DCIR2+ DCs, and overexpression of Zbtb32 in islet-specific T cells inhibited the diabetes development by limiting T cell proliferation and cytokine production. Methods: To further understand the role of Zbtb32 in T cell tolerance induction, we have now used CRISPR to target the Zbtb32 gene for deletion directly in NOD mice and characterized the mutant mice. We hypothesized that the systemic loss of Zbtb32 in NOD mice would lead to increased T cell activation and increased diabetes pathogenesis. Results: Although NOD.Zbtb32-/- male NOD mice showed a trend towards increased diabetes incidence compared to littermate controls, the difference was not significant. Furthermore, no significant alteration in lymphocyte number or function was observed. Importantly, in vitro stimulation of lymphocytes from NOD.Zbtb32-/- mice did not produce the expected hypersensitive phenotype observed in other genetic strains, potentially due to compensation by homologous genes. Conclusions: The loss of Zbtb32 in the NOD background does not result in the expected T cell activation phenotype.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 867-867
Author(s):  
Lequn Li ◽  
Yoshiko Iwamoto ◽  
Alla Berezovskaya ◽  
Vassiliki A. Boussiotis

Abstract Induction and maintenance of peripheral tolerance is essential for homeostasis of the immune system. In vivo studies demonstrate the significance of tolerance induction in preventing autoimmunity, graft rejection and GVHD. Upregulation of the cyclin-dependent kinase inhhibitor, p27, correlates with induction of T cell tolerance in vitro and in vivo. p27 interacts with cdk2, cdc2, grb2, and Rho family GTPases. Extensive studies support an essential role of cdks, particularly cdk2, in cell cycle re-entry. Cdk2 promotes cell cycle progression in part by phosphorylating Rb and related pocket proteins thereby reversing their ability to sequester E2F transcription factors. Recent work indicates that cdk2 phosphorylates Smad2 and Smad3. Smad3 inhibits progression from G1 to S phase, and impaired phosphorylation on the cdk-specific sites renders it more effective in executing this function. In contrast, cdk-mediated phosphorylation of Smad3 reduces Smad3 transcriptional activity and antiproliferative function. In spite the strong correlation between p27 expression level and T cell tolerance, it remains unclear whether p27 has a causative role in induction of tolerance. Here, we examined the role of p27 during induction of tolerance of naïve T cells in vivo, using RAG2 deficient, DO11.10 TCR-transgenic T cells that lack the cyclin-cdk-binding domain of p27 (p27Δ) thereby disrupting only the interactions of p27 with cyclin-cdk complexes. We adoptively transferred CD4+ T cells from RAG2−/−DO11.10 TCR-transgenic mice (DO11.10) or RAG2−/−DO11.10 TCR-transgenic p27Δ mice (DO11.10/p27Δ) into syngeneic wild-type recipients and compared the development of immune responses to immunogenic or tolerizing stimulus in vivo. Following exposure to immunogenic or tolerizing stimulus, DO11.10 and DO11.10/p27Δ CD4+ T cells underwent equal numbers of divisions in vivo, and both cell types exhibited reduced number of divisions in response to tolerizing stimulus. Strikingly, only wild-type DO11.10 TCR-transgenic T cells were tolerized as determined by impaired cyclin E activation, proliferation, and IL-2 production upon antigen-specific rechallenge. Compared to primed wild-type DO11.10 cells, tolerized wild-type DO11.10 cells exhibited impaired cdk2 and cdc2 activity, reduced levels of Smad3 phosphorylation on cdk-specific sites, and increased Smad3-transactivation leading to upregulation of the cdk4/6-specific cdk inhibitor p15. In contrast, after either priming or tolerizing stimulus, DO11.10/p27Δ cells exhibited comparable cdk2 and cdc2 activity, cdk-mediated phosphorylation of Smad3, low-level Smad3 transactivation, and no upregulation of p15. Furthermore, knockdown of Smad3 by expression of Smad3 shRNA in wild-type DO11.10 T cells recapitulated the functional and molecular findings observed in DO11.10/p27Δ cells, preventing induction of tolerance and upregulation of p15, and resulting in production of IL-2 and cell cycle progression. In contrast, expression of Smad3 mutant resistant to cdk-mediated phosphorylation in DO11.10/p27Δ cells recapitulated the molecular and functional effects of tolerance and resulted in inhibition of IL-2 production, upregulation of p15 and blockade of cell cycle progression. These results show that p27 plays a causative role in the induction of tolerance of naïve T cells and Smad3 is a critical component of a pathway downstream of p27 regulating the induction of tolerance in vivo.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 693-693
Author(s):  
Krystalyn E Hudson ◽  
Jeanne Hendrickson ◽  
Chantel M Cadwell ◽  
Neal N Iwakoshi ◽  
James C. Zimring

Abstract Abstract 693 Introduction: Breakdown of humoral tolerance to red blood cell (RBC) antigens can result in autoimmune hemolytic anemia (AIHA), a severe and potentially fatal disease. The pathogenesis of AIHA is poorly understood. To investigate the baseline biology of tolerance to self-antigens expressed on RBCs, we utilized a murine transgenic mouse with RBC-specific expression of a model antigen consisting of a triple fusion protein of hen egg lysozyme (HEL), ovalbumin (Ova), and human blood group molecule Duffy; HEL-OVA-Duffy (HOD mouse). Methods: Wild-type C57BL/6 (B6) mice or HOD mice (on a B6 background) were immunized with HEL/CFA or OVA/CFA to test immune responses to antigens contained within HOD. Some animals were immunized with peptides as opposed to whole protein. Anti-HOD antibodies were quantified by indirect immunofluorescence using HOD RBCs as targets. Anti-HEL IgG was quantified by ELISA and anti-HEL secreting B cells were enumerated by ELISPOT. CD4+ T cell responses were assessed by tetramer staining and tetramer pull-down assays using I-Ab-OVA-329-337/326-334. T cell tolerance was specifically broken by adoptive transfer of OT-II CD4+ T cells into HOD mice (OT-II T cells recognize OVA323-339 presented by I-Ab). Effects of HOD antigen expression on B cell development were evaluated by crossing the HOD mouse with an anti-HEL BCR knockin mouse (SwHEL mouse) that is capable of normal class switching. Results: Immunization of B6 mice with OVA/CFA induced high titer antibodies reactive with HOD RBCs; in contrast, no anti-HOD was detected in HOD mice immunized with OVA/CFA. Similarly, no anti-HEL was detected in HOD mice immunized with HEL/CFA, whereas wild-type B6 mice had high anti-HEL titers (p<0.05). These data demonstrate overall humoral tolerance to the HOD antigen. Using pull-down assays, OVA-tetramer reactive T cells were detected in both B6 and HOD mice, with similar endogenous frequencies (mean numbers are 40 and 53 T cells, respectively; at least 6 mice analyzed), suggesting that central tolerance did not eliminate HOD reactive T cells. However, upon immunization with OVA peptide, B6 but not HOD mice had a detectable expansion of OVA-tetramer reactive CD4+ T cells, indicating that peripheral tolerance was preventing HOD autoreactive CD4+ T cells from participating in an immune response. To assess B cell tolerance to the HOD antigen, T cell tolerance was circumvented through adoptive transfer or OTII splenocytes (specific for the OVA323-339 peptide) into HOD mice. Anti-HEL autoantibodies were detected in HOD mice but not control B6 mice (p<0.001). Antibody production correlated with a 10–20 fold increase of anti-HEL antibody secreting cells, as determined by ELISPOT. Autoantibody production in HOD mice was not due to passenger B cells from the OTII donor, an artifact of excess CD4+ T cell number, or bystander activation as no autoantibodies were observed upon adoptive transfer with OTIIs on a Rag knockout background, irrelevant CD4+ T cells from SMARTA mice, or activated CD4+ T cells from TCR75 mice. To test the effects of HOD antigen expression on development of autoreactive B cells, HOD mice were crossed with SwHEL BCR transgenic mice (that express anti-HEL) and the F1 mice were analyzed. HEL-reactive B cells were visualized using multimeric HEL conjugated to allophycocyanin. In HOD-SwHEL+ mice, approximately 46±14% of immature bone marrow B cells were reactive with HEL, compared to 15±12% in HOD+SwHEL+ mice (p=0.043, 3 independent experiments, 5 mice total). Conclusions: These data demonstrate that tolerance to an RBC specific antigen is complete in the CD4+ T cell, but not the B cell compartment. CD4+ T cell tolerance appears to be more an effect of peripheral tolerance than central deletion, as OVA-tetramer reactive CD4+ T cells were visible in HOD mice but did not activate upon immunization with their cognate antigen. In contrast, while the HODxSwHEL F1 mice demonstrate that some B cell tolerance to HOD occurs, the induction of autoantibodies by introducing CD4+ autoreactive T cells (OT-II) demonstrates that B cell tolerance to the HOD antigen is incomplete in HOD mice. Together, these data suggest that a breakdown in T cell tolerance is all that is required for the pathogenesis of AIHA. As the T cell tolerance appears not to be deletional, it is predicted that environmental factors leading to a breakdown in peripheral tolerance of CD4+ T cells would be sufficient to induce AIHA. Disclosures: Zimring: Immucor Inc,: Research Funding.


2007 ◽  
Vol 178 (2) ◽  
pp. 887-896 ◽  
Author(s):  
Sarah E. Cabbage ◽  
Eric S. Huseby ◽  
Blythe D. Sather ◽  
Thea Brabb ◽  
Denny Liggitt ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3249-3256 ◽  
Author(s):  
Laurence Weiss ◽  
Vladimira Donkova-Petrini ◽  
Laure Caccavelli ◽  
Michèle Balbo ◽  
Cédric Carbonneil ◽  
...  

Abstract The present study demonstrates that CD4+CD25+ T cells, expanded in peripheral blood of HIV-infected patients receiving highly active antiretroviral therapy (HAART), exhibit phenotypic, molecular, and functional characteristics of regulatory T cells. The majority of peripheral CD4+CD25+ T cells from HIV-infected patients expressed a memory phenotype. They were found to constitutively express transcription factor forkhead box P3 (Foxp3) messengers. CD4+CD25+ T cells weakly proliferated to immobilized anti-CD3 monoclonal antibody (mAb) and addition of soluble anti-CD28 mAb significantly increased proliferation. In contrast to CD4+CD25– T cells, CD4+CD25+ T cells from HIV-infected patients did not proliferate in response to recall antigens and to p24 protein. The proliferative capacity of CD4 T cells to tuberculin, cytomegalovirus (CMV), and p24 significantly increased following depletion of CD4+CD25+ T cells. Furthermore, addition of increasing numbers of CD4+CD25+ T cells resulted in a dose-dependent inhibition of CD4+CD25– T-cell proliferation to tuberculin and p24. CD4+CD25+ T cells responded specifically to p24 antigen stimulation by expressing transforming growth factor β (TGF-β) and interleukin 10 (IL-10), thus indicating the presence of p24-specific CD4+ T cells among the CD4+CD25+ T-cell subset. Suppressive activity was not dependent on the secretion of TGF-β or IL-10. Taken together, our results suggest that persistence of HIV antigens might trigger the expansion of CD4+CD25+ regulatory T cells, which might induce a tolerance to HIV in vivo.


Hepatology ◽  
2009 ◽  
Vol 50 (2) ◽  
pp. 612-621 ◽  
Author(s):  
Ekaterina Breous ◽  
Suryanarayan Somanathan ◽  
Luk H. Vandenberghe ◽  
James M. Wilson

Sign in / Sign up

Export Citation Format

Share Document