Lane-change-aware connected automated vehicle trajectory optimization at a signalized intersection with multi-lane roads

2021 ◽  
Vol 129 ◽  
pp. 103182
Author(s):  
Handong Yao ◽  
Xiaopeng Li
2021 ◽  
Vol 13 (16) ◽  
pp. 9278
Author(s):  
Ruoxi Jiang ◽  
Shunying Zhu ◽  
Hongguang Chang ◽  
Jingan Wu ◽  
Naikan Ding ◽  
...  

Currently, several traffic conflict indicators are used as surrogate safety measures. Each indicator has its own advantages, limitations, and suitability. There are only a few studies focusing on fixed object conflicts of highway safety estimation using traffic conflict technique. This study investigated which conflict indicator was more suitable for traffic safety estimation based on conflict-accident Pearson correlation analysis. First, a high-altitude unmanned aerial vehicle was used to collect multiple continuous high-precision videos of the Jinan-Qingdao highway. The vehicle trajectory data outputted from recognition of the videos were used to acquire conflict data following the procedure for each conflict indicator. Then, an improved indicator Ti was proposed based on the advantages and limitations of the conventional indicators. This indicator contained definitions and calculation for three types of traffic conflicts (rear-end, lane change and with fixed object). Then the conflict-accident correlation analysis of TTC (Time to Collision)/PET (Post Encroachment Time)/DRAC (Deceleration Rate to Avoid Crash)/Ti indicators were carried out. The results show that the average value of the correlation coefficient for each indicator with different thresholds are 0.670 for TTC, 0.669 for PET, and 0.710 for DRAC, and 0.771 for Ti, which Ti indicator is obviously higher than the other three conventional indicators. The findings of this study suggest TTC often fails to identify lane change conflicts, PET indicator easily misjudges some rear-end conflict when the speed of the following vehicle is slower than the leading vehicle, and PET is less informative than other indicators. At the same time, these conventional indicators do not consider the vehicle-fixed objects conflicts. The improved Ti can overcome these shortcomings; thus, Ti has the highest correlation. More data are needed to verify and support the study.


2021 ◽  
pp. 4151-4166
Author(s):  
Xiangyang Hui ◽  
Fenghua Chi ◽  
Zheng Qi ◽  
Meng Wu ◽  
Fei Li

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 77 ◽  
Author(s):  
Juan Chen ◽  
Zhengxuan Xue ◽  
Daiqian Fan

In order to solve the problem of vehicle delay caused by stops at signalized intersections, a micro-control method of a left-turning connected and automated vehicle (CAV) based on an improved deep deterministic policy gradient (DDPG) is designed in this paper. In this paper, the micro-control of the whole process of a left-turn vehicle approaching, entering, and leaving a signalized intersection is considered. In addition, in order to solve the problems of low sampling efficiency and overestimation of the critic network of the DDPG algorithm, a positive and negative reward experience replay buffer sampling mechanism and multi-critic network structure are adopted in the DDPG algorithm in this paper. Finally, the effectiveness of the signal control method, six DDPG-based methods (DDPG, PNRERB-1C-DDPG, PNRERB-3C-DDPG, PNRERB-5C-DDPG, PNRERB-5CNG-DDPG, and PNRERB-7C-DDPG), and four DQN-based methods (DQN, Dueling DQN, Double DQN, and Prioritized Replay DQN) are verified under 0.2, 0.5, and 0.7 saturation degrees of left-turning vehicles at a signalized intersection within a VISSIM simulation environment. The results show that the proposed deep reinforcement learning method can get a number of stops benefits ranging from 5% to 94%, stop time benefits ranging from 1% to 99%, and delay benefits ranging from −17% to 93%, respectively compared with the traditional signal control method.


2017 ◽  
Vol 2622 (1) ◽  
pp. 105-116 ◽  
Author(s):  
Da Yang ◽  
Xiaoping Qiu ◽  
Lina Ma ◽  
Danhong Wu ◽  
Liling Zhu ◽  
...  

In recent years, automated vehicles have been developing rapidly, and some automated vehicles have begun to drive on highways. The market share of automated vehicles is expected to increase and will greatly affect traffic flow characteristics. This paper focuses on the mixed traffic flow of manual and automated vehicles. The study improves the existing cellular automaton model to capture the differences between manual vehicles and automated vehicles. Computer simulations are employed to analyze the characteristic variations in the mixed traffic flow under different automated vehicle proportions, lane change probabilities, and reaction times. Several new conclusions are drawn in the paper. First, with the increment of the proportion of automated vehicles, freeway capacity increases; the capacity increment is more significant for single-lane traffic than for two-lane traffic. Second, for single-lane traffic flow, reducing the reaction time of the automated vehicle can significantly improve road traffic capacity—as much as doubling it—and reaction time reduction has no obvious effect on the capacity of the two-lane traffic. Third, with the proportion increment of automated vehicles, lane change frequency reduces significantly. Fourth, when the density is 15 < ρ < 55 vehicles/km, the addition of 20% automated vehicles to a traffic flow that consisted of only manual vehicles can decrease congestion by up to 16.7%.


Sign in / Sign up

Export Citation Format

Share Document