Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study

Author(s):  
Seth Miller ◽  
Zachary Vander Laan ◽  
Nikola Marković
2021 ◽  
Vol 10 (2) ◽  
pp. 27
Author(s):  
Roberto Casadei ◽  
Gianluca Aguzzi ◽  
Mirko Viroli

Research and technology developments on autonomous agents and autonomic computing promote a vision of artificial systems that are able to resiliently manage themselves and autonomously deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-centre operations). Beyond the results that individual autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents or robots. Emerging macro-paradigms provide an approach to programming whole collectives towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of computational fields enabling functional composition of collective behaviours that could be proved, under certain technical conditions, to be self-stabilising. In this work, we address the concept of collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how the aggregate computing framework relates to both individual and collective autonomy, and show how it can be used to program collective autonomous behaviour. We exemplify the concepts through a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.


2021 ◽  
Vol 12 (02) ◽  
pp. 229-236
Author(s):  
Clair Sullivan ◽  
Ides Wong ◽  
Emily Adams ◽  
Magid Fahim ◽  
Jon Fraser ◽  
...  

Abstract Background Queensland, Australia has been successful in containing the COVID-19 pandemic. Underpinning that response has been a highly effective virus containment strategy which relies on identification, isolation, and contact tracing of cases. The dramatic emergence of the COVID-19 pandemic rendered traditional paper-based systems for managing contact tracing no longer fit for purpose. A rapid digital transformation of the public health contact tracing system occurred to support this effort. Objectives The objectives of the digital transformation were to shift legacy systems (paper or standalone electronic systems) to a digitally enabled public health system, where data are centered around the consumer rather than isolated databases. The objective of this paper is to outline this case study and detail the lessons learnt to inform and give confidence to others contemplating digitization of public health systems in response to the COVID-19 pandemic. Methods This case study is set in Queensland, Australia. Universal health care is available. A multidisciplinary team was established consisting of clinical informaticians, developers, data strategists, and health information managers. An agile “pair-programming” approach was undertaken to application development and extensive change efforts were made to maximize adoption of the new digital workflows. Data governance and flows were changed to support rapid management of the pandemic. Results The digital coronavirus application (DCOVA) is a web-based application that securely captures information about people required to quarantine and creates a multiagency secure database to support a successful containment strategy. Conclusion Most of the literature surrounding digital transformation allows time for significant consultation, which was simply not possible under crisis conditions. Our observation is that staff was willing to adopt new digital systems because the reason for change (the COVID-19 pandemic) was clearly pressing. This case study highlights just how critical a unified purpose, is to successful, rapid digital transformation.


2018 ◽  
Vol 52 (3) ◽  
pp. 779-805 ◽  
Author(s):  
Vedat Bayram ◽  
Hande Yaman

Shelter location and traffic allocation decisions are critical for an efficient evacuation plan. In this study, we propose a scenario-based two-stage stochastic evacuation planning model that optimally locates shelter sites and that assigns evacuees to nearest shelters and to shortest paths within a tolerance degree to minimize the expected total evacuation time. Our model considers the uncertainty in the evacuation demand and the disruption in the road network and shelter sites. We present a case study for a potential earthquake in Istanbul. We compare the performance of the stochastic programming solutions to solutions based on single scenarios and mean values.


Sign in / Sign up

Export Citation Format

Share Document