scholarly journals A Programming Approach to Collective Autonomy

2021 ◽  
Vol 10 (2) ◽  
pp. 27
Author(s):  
Roberto Casadei ◽  
Gianluca Aguzzi ◽  
Mirko Viroli

Research and technology developments on autonomous agents and autonomic computing promote a vision of artificial systems that are able to resiliently manage themselves and autonomously deal with issues at runtime in dynamic environments. Indeed, autonomy can be leveraged to unburden humans from mundane tasks (cf. driving and autonomous vehicles), from the risk of operating in unknown or perilous environments (cf. rescue scenarios), or to support timely decision-making in complex settings (cf. data-centre operations). Beyond the results that individual autonomous agents can carry out, a further opportunity lies in the collaboration of multiple agents or robots. Emerging macro-paradigms provide an approach to programming whole collectives towards global goals. Aggregate computing is one such paradigm, formally grounded in a calculus of computational fields enabling functional composition of collective behaviours that could be proved, under certain technical conditions, to be self-stabilising. In this work, we address the concept of collective autonomy, i.e., the form of autonomy that applies at the level of a group of individuals. As a contribution, we define an agent control architecture for aggregate multi-agent systems, discuss how the aggregate computing framework relates to both individual and collective autonomy, and show how it can be used to program collective autonomous behaviour. We exemplify the concepts through a simulated case study, and outline a research roadmap towards reliable aggregate autonomy.

2009 ◽  
Vol 90 (11) ◽  
pp. 3607-3615 ◽  
Author(s):  
Paolo C. Campo ◽  
Guillermo A. Mendoza ◽  
Philippe Guizol ◽  
Teodoro R. Villanueva ◽  
François Bousquet

Author(s):  
Kun Zhang ◽  
◽  
Yoichiro Maeda ◽  
Yasutake Takahashi ◽  

Research on multi-agent systems, in which autonomous agents are able to learn cooperative behavior, has been the subject of rising expectations in recent years. We have aimed at the group behavior generation of the multi-agents who have high levels of autonomous learning ability, like that of human beings, through social interaction between agents to acquire cooperative behavior. The sharing of environment states can improve cooperative ability, and the changing state of the environment in the information shared by agents will improve agents’ cooperative ability. On this basis, we use reward redistribution among agents to reinforce group behavior, and we propose a method of constructing a multi-agent system with an autonomous group creation ability. This is able to strengthen the cooperative behavior of the group as social agents.


Author(s):  
Anet Potgieter ◽  
Judith Bishop

Most agent architectures implement autonomous agents that use extensive interaction protocols and social laws to control interactions in order to ensure that the correct behaviors result during run-time. These agents, organized into multi-agent systems in which all agents adhere to predefined interaction protocols, are well suited to the analysis, design and implementation of complex systems in environments where it is possible to predict interactions during the analysis and design phases. In these multi-agent systems, intelligence resides in individual autonomous agents, rather than in the collective behavior of the individual agents. These agents are commonly referred to as “next-generation” or intelligent components, which are difficult to implement using current component-based architectures. In most distributed environments, such as the Internet, it is not possible to predict interactions during analysis and design. For a complex system to be able to adapt in such an uncertain and non-deterministic environment, we propose the use of agencies, consisting of simple agents, which use probabilistic reasoning to adapt to their environment. Our agents collectively implement distributed Bayesian networks, used by the agencies to control behaviors in response to environmental states. Each agency is responsible for one or more behaviors, and the agencies are structured into heterarchies according to the topology of the underlying Bayesian networks. We refer to our agents and agencies as “Bayesian agents” and “Bayesian agencies.”


Author(s):  
Carole Bernon ◽  
Valérie Camps ◽  
Marie-Pierre Gleizes ◽  
Gauthier Picard

This chapter introduces the ADELFE methodology, an agent-oriented methodology dedicated to the design of systems that are complex, open, and not well-specified. The need for its development is justified by the theoretical background given in the first section, which also gives an overview of the concepts on which multi-agent systems developed with ADELFE are based. A methodology is composed of a process, a notation, and tools. Tools are presented in the second section and the process in the third one, using an information system case study to better visualize how to apply this process.


Author(s):  
Manuel Kolp ◽  
Yves Wautelet ◽  
Sodany Kiv ◽  
Vi Tran

Multi-Agent Systems (MAS) architectures are gaining popularity over traditional ones for building open, distributed, and evolving software required by today’s corporate IT applications such as e-business systems, Web services or enterprise knowledge bases. Since the fundamental concepts of multi-agent systems are social and intentional rather than object, functional, or implementation-oriented, the design of MAS architectures can be eased by using social-driven templates. They are detailed agent-oriented design idioms to describe MAS architectures as composed of autonomous agents that interact and coordinate to achieve their intentions, like actors in human organizations. This paper presents social patterns, as well as organizational styles, and focuses on a framework aimed to gain insight into these templates. The framework can be integrated into agent-oriented software engineering methodologies used to build MAS. We consider the Broker social pattern to illustrate the framework. The mapping from system architectural design (through organizational architectural styles), to system detailed design (through social patterns), is overviewed with a data integration case study. The automation of patterns design is also overviewed.


Author(s):  
Sofia Kouah ◽  
Djamel Eddine Saïdouni

For developing large dynamic systems in a rigorous manner, fuzzy labeled transition refinement tree (FLTRT for short) has been defined. This model provides a formal specification framework for designing such systems. In fact, it supports abstraction and enables fuzziness which allows a rigorous formal refinement process. The purpose of this paper is to illustrate the applicability of FLTRT for designing multi agent systems (MAS for short), among others collective and internal agent's behaviors. Therefore, Contract Net Protocol (CNP for short) is chosen as case study.


AI Magazine ◽  
2012 ◽  
Vol 33 (3) ◽  
pp. 66
Author(s):  
Gal A. Kaminka

Robots (and roboticists) increasingly appear at the Autonomous Agents and Multi-Agent Systems (AAMAS) conferences because the community uses robots both to inspire AAMAS research as well as to conduct it. In this article, I submit that the growing success of robotics at AAMAS is due not only to the nurturing efforts of the AAMAS community, but mainly to the increasing recognition of an important, deeper, truth: it is scientifically useful to roboticists and agent researchers to think of robots as agents.


Author(s):  
Haibin Zhu ◽  
MengChu Zhou

Agent system design is a complex task challenging designers to simulate intelligent collaborative behavior. Roles can reduce the complexity of agent system design by categorizing the roles played by agents. The role concepts can also be used in agent systems to describe the collaboration among cooperative agents. In this chapter, we introduce roles as a means to support interaction and collaboration among agents in multi-agent systems. We review the application of roles in current agent systems at first, then describe the fundamental principles of role-based collaboration and propose the basic methodologies of how to apply roles into agent systems (i.e., the revised E-CARGO model). After that, we demonstrate a case study: a soccer robot team designed with role specifications. Finally, we present the potentiality to apply roles into information personalization.


Author(s):  
Uros Krcadinac ◽  
Milan Stankovic ◽  
Vitomir Kovanovic ◽  
Jelena Jovanovic

Since the AAAI (http://www.aaai.org) Spring Symposium in 1994, intelligent software agents and agentbased systems became one of the most significant and exciting areas of research and development (R&D) that inspired many scientific and commercial projects. In a nutshell, an agent is a computer program that is capable of performing a flexible, autonomous action in typically dynamic and unpredictable domains (Luck, McBurney, Shehory, & Willmott, 2005). Agents emerged as a response of the IT research community to the new data-processing requirements that traditional computing models and paradigms were increasingly incapable to deal with (e.g., the huge and ever-increasing quantities of available data). Agent-oriented R&D has its roots in different disciplines. Undoubtedly, the main contribution to the field of autonomous agents came from artificial intelligence (AI) which is focused on building intelligent artifacts; and if these artifacts sense and act in some environment, then they can be considered agents (Russell & Norvig, 1995). Also, object-oriented programming (Booch, 2004), concurrent object-based systems (Agha, Wegner, & Yonezawa, 1993), and human-computer interaction (Maes, 1994) are fields that have constantly driven forward the agent R&D in the last few decades.


Sign in / Sign up

Export Citation Format

Share Document