Bifurcation analysis of flexible rotor supported by couple-stress fluid film bearings with non-linear suspension systems

2008 ◽  
Vol 41 (5) ◽  
pp. 367-386 ◽  
Author(s):  
Cai-Wan Chang-Jian ◽  
Chao-Kuang Chen
Author(s):  
C-W Chang-Jian ◽  
C-K Chen

The current study performs a dynamic analysis of a rotor supported by two couple stress fluid film journal bearings with non-linear suspension. The dynamics of the rotor centre and bearing centre are studied. The analysis of the rotor—bearing system is investigated under the assumptions of a couple-stress lubricant and a short journal bearing approximation. The displacements in the horizontal and vertical directions are considered for various non-dimensional speed ratios. The analysis methods employed in this study include the dynamic trajectories of the rotor centre and the bearing centre, Poincaré maps, and bifurcation diagrams. The Lyapunov exponent analysis is also used to identify the onset of chaotic motion. Numerical results show that the stability of the system varies with the non-dimensional speed ratios. Specifically, it is found that the system is quasi-periodic at a small speed ratio ( s = 0.5). At speed ratios of s = 0.6–0.7, the system is periodic. At s = 0.8–1.9, the system is quasi-periodic, but the system is periodic at s = 2.0–2.6. However, the system exhibits chaotic motion at the speed ratios s = 2.7–2.74. At the speed ratios s = 2.75–3.16, the system becomes periodic. At s = 3.17–3.30, the system is unstable. The Poincaré map has a particular form at s = 3.17, indicative of a chaotic motion. At s = 3.31–6.0, the system finally becomes periodic. The results also confirm that the stability of the system varies with the non-dimensional speed ratios s and l∗. The results of this study allow suitable system parameters to be defined such that undesirable behaviour of the rotor centre can be avoided and the bearing system life extended as a result.


Author(s):  
Luis San Andre´s ◽  
Oscar C. De Santiago

Field identification of fluid film bearing parameters is critical for adequate interpretation of rotating machinery performance and necessary to validate or calibrate predictions from restrictive computational fluid film bearing models. This paper presents a simple method for estimating bearing support force coefficients in flexible rotor-bearing systems. The method requires two independent tests with known mass imbalance distributions and the measurement of the rotor motion (amplitude and phase) at locations close to the supports. The procedure relies on the modeling of the rotor structure and finds the bearing transmitted forces as a function of observable quantities (rotor vibrations at bearing locations). Imbalance response measurements conducted with a two-disk flexible rotor supported on two-lobe fluid film bearings allow validation of the identification method estimations. Predicted (linearized) bearing force coefficients agree reasonably well with the parameters derived from the test data. The method advanced neither adds mathematical complexity nor requires additional instrumentation beyond that already available in most high performance turbomachinery.


1989 ◽  
Vol 111 (3) ◽  
pp. 351-353
Author(s):  
Wen Zhang

The paper is devoted to the estimation of the lower bound of the stability threshold speed (STS) of a flexible rotor system supported in fluid-film bearings. It is proved theoretically that the STS of any multi-degree-of-freedom flexible rotor system is always higher than the STS of the corresponding equivalent single disk rotor. The conclusion offers us a simple approach to estimate the STS of any actual rotor system and provides a theoretical foundation for the approach.


Sign in / Sign up

Export Citation Format

Share Document