Refined simulation of friction power loss in crank shaft slider bearings considering wear in the mixed lubrication regime

2012 ◽  
Vol 46 (1) ◽  
pp. 200-207 ◽  
Author(s):  
C. Priestner ◽  
H. Allmaier ◽  
H.H. Priebsch ◽  
C. Forstner
2019 ◽  
Vol 132 ◽  
pp. 265-274 ◽  
Author(s):  
Abdullah Azam ◽  
Ali Ghanbarzadeh ◽  
Anne Neville ◽  
Ardian Morina ◽  
Mark C.T. Wilson

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shaoyong Xu ◽  
Vanliem Nguyen ◽  
Xiaoyan Guo ◽  
Huan Yuan

Purpose This paper aims to propose an optimal design of the partial textures in the mixed lubrication regime of the crankpin bearing (CB) to maximize the CB's lubrication efficiency. Design/methodology/approach Based on a hybrid model between the slider-crank-mechanism dynamic and CB lubrication, the square-cylindrical textures (SCT) of partial textures designed on the CB’s mixed lubrication regime are researched. The effect of the density distributions of partial textures on CB’s lubrication efficiency is then evaluated via two indices of increasing the oil film pressure (p) and decreasing the frictional force (Ff) of the CB. The SCT’s geometrical dimensions are then optimized by the genetic algorithm to further improve the CB’s lubrication efficiency. Findings The results show that the SCT of partial textures optimized by the genetic algorithm has an obvious effect on enhancing CB’s lubrication efficiency. Especially, with the CB using the optimal SCT of partial textures (4 × 6), the maximum p is significantly increased by 3.7% and 8.2%, concurrently, the maximum Ff is evidently reduced by 9.5% and 21.6% in comparison with the SCT of partial textures (4 × 6) without optimization and the SCT of full textures (12 × 6) designed throughout the CB’s bearing surface, respectively. Originality/value The application of the optimal SCT of partial textures on the bearing surface not only is simple for the design-manufacturing process and maximizes CB’s lubrication efficiency but also can reduce the machining time, save cost and ensure the durability of the bearing compared to use the full textures designed throughout the CB’s bearing surface.


1972 ◽  
Vol 186 (1) ◽  
pp. 421-430 ◽  
Author(s):  
H. Christensen

The phenomena observed when a lubricated contact or bearing is operating under mixed lubrication conditions are assumed to arise from an interaction of the surface asperities or roughness as well as from hydro-dynamic action of the sliding surfaces. It is shown how one of the previously published stochastic models of hydrodynamic lubrication can be extended or generalized to deal with mixed lubricating conditions. As an illustration of the application of the theory to a concrete example the influence on the operating characteristics of a plane pad, no side-leakage bearing is analysed. It is found that in the mixed lubrication regime friction is mainly controlled by the boundary lubrication properties of the liquid–solid interface. Load, on the other hand, is almost entirely controlled by the hydro-dynamic properties of the bearing. It is demonstrated how transition to mixed lubrication conditions will cause a rapid rise in friction thereby producing a minimum point in the Stribeck type diagram.


2016 ◽  
Vol 68 (4) ◽  
pp. 458-465 ◽  
Author(s):  
Lijesh K.P. ◽  
Muzakkir S.M. ◽  
Harish Hirani ◽  
Gananath Doulat Thakre

Purpose The journal bearings subjected to heavy load and slow speed operate in mixed lubrication regime causing contact between the interacting surfaces and resulting in wear. Complexity of wear behavior and lack of unifying theory/model make wear-control very challenging. Design/methodology/approach In the present research work, theoretical and experimental investigations have been conducted to explore the effect of grooving arrangements on the wear behavior of journal bearing operating in mixed lubrication regime. The theoretical model of Hirani (2005) that uses mass conserving cavitation algorithm has been used to determine the bearing eccentricity for different groove arrangements (with varying groove location and extent) for identifying a groove arrangement that minimizes the wear. The wear tests on the grooved bearings were conducted after suitable running-in of the new bearings on a fully automated journal bearing test set-up. A load and speed combination required to operate the bearing in mixed lubrication was used. The performance of different arrangement of bearing was evaluated by measuring their weight loss after the test. Findings Wear was significantly reduced with the use of proper groove arrangement for a bearing operating in mixed lubrication regime. Originality/value The improvement in bearing performance by providing grooves has been the subject matter of several studies in the past, but these studies were confined to the hydrodynamic operative regime of the bearing. In the present work, seven different combinations of axial and radial groove arrangement were tried, which has not been reported in any other work.


2003 ◽  
Vol 125 (3) ◽  
pp. 469-479 ◽  
Author(s):  
Shunhe Xiong ◽  
Richard F. Salant

A dynamic model of a contacting mechanical seal for down-hole tools, operating in the mixed lubrication regime, has been constructed. Two dynamic cases are examined: the behavior of the seal after it is subjected to a nonequilibrium initial condition and the behavior of the seal as it tracks axial runout of the rotating face. In both cases the seal experiences much larger leakage and inflow (incursion) rates than under steady-state conditions, although in the former case the duration of the increased rates is very short.


Sign in / Sign up

Export Citation Format

Share Document