Nonlinear dynamic performance of tilting-pad journal bearing with adjustable elastic pivot design

2019 ◽  
Vol 136 ◽  
pp. 533-547 ◽  
Author(s):  
Yingze Jin ◽  
Fei Chen ◽  
Fan Zhang ◽  
Xiaoyang Yuan
1981 ◽  
Vol 23 (3) ◽  
pp. 131-141
Author(s):  
M. Malik ◽  
R. Sinhasan ◽  
D. V. Singh

The rolling-pad journal bearing is a kinematic variation of the well-known tilting-pad journal bearing. In rolling-pad bearings, the pads, instead of tilting about fixed pivots, roll at their back surfaces on the inside surface of a common sleeve to accommodate changes in the operating conditions of the bearing. This paper presents a comparison of the theoretical performance characteristics of rolling-pad journal bearings with those of tilting-pad journal bearings. The comparative study indicates that the dynamic performance characteristics of the rolling-pad bearing configuration are superior to those of the tilting-pad bearing.


1977 ◽  
Vol 99 (1) ◽  
pp. 122-127 ◽  
Author(s):  
D. V. Nelson ◽  
L. W. Hollingsworth

A promising new type of tilting pad journal bearing—the Fluid Pivot journal bearing—is described. The long development history of this bearing is summarized, showing how the design evolved through research and testing. Static and dynamic performance features of the bearing are presented, with sample test results compared with predictions based on an advanced computer analysis. Comparisons of the Fluid Pivot journal bearing with conventional mechanically pivoted journal bearings are given.


Author(s):  
Tian Jiale ◽  
Yang Baisong ◽  
Sun Yanhua ◽  
Yu Lie ◽  
Zhou Jian

High-speed and heavy-loaded rotating machinery require accurate prediction of rotor’s response and stability, which can be characterized by the static and dynamic coefficients of the bearing support. In this paper, a theoretical study has been done to investigate the performance of a fixed-tilting pad journal bearing with ball-in-socket pivot. The analytical model is established with the flexibility of the pad pivot and turbulent effect of the oil film both taken consideration. Under such situation, the pad pivot elastic deformation and its stiffness are calculated using Hertz Contact Theory for various operating points of the rotor-bearing system. The finite element method is adopted to simulate the static coefficients of the fixed-tilting pad bearing, obtaining its oil film pressure distribution varied with the bearing eccentricity ratio. The corresponding dynamic stiffness and damping of the oil film are solved using partial derivative method. In addition, a special interest is put in investigating the effect of the series complex stiffness of the oil film and pad pivot, according to which, the equivalent dynamic characteristics are obtained. The results show that the relation between these two factors are complex and interactive, both of which have a significant influence on the static and dynamic performance of the bearing.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


1994 ◽  
Vol 116 (3) ◽  
pp. 621-627 ◽  
Author(s):  
H. Desbordes ◽  
M. Fillon ◽  
C. Chan Hew Wai ◽  
J. Frene

A theoretical nonlinear analysis of tilting-pad journal bearings is presented for small and large unbalance loads under isothermal conditions. The radial displacements of internal pad surface due to pressure field are determined by a two-dimensional finite element method in order to define the actual film thickness. The influence of pad deformations on the journal orbit, on the minimum film thickness and on the maximum pressure is studied. The effects of pad displacements are to decrease the minimum film thickness and to increase the maximum pressure. The orbit amplitude is also increased by 20 percent for the large unbalance load compared to the one obtained for rigid pad.


Sign in / Sign up

Export Citation Format

Share Document