The Influence of Pad Pivot Elastic Deformation on Static and Dynamic Coefficients for Fixed-Tilting Pad Journal Bearing

Author(s):  
Tian Jiale ◽  
Yang Baisong ◽  
Sun Yanhua ◽  
Yu Lie ◽  
Zhou Jian

High-speed and heavy-loaded rotating machinery require accurate prediction of rotor’s response and stability, which can be characterized by the static and dynamic coefficients of the bearing support. In this paper, a theoretical study has been done to investigate the performance of a fixed-tilting pad journal bearing with ball-in-socket pivot. The analytical model is established with the flexibility of the pad pivot and turbulent effect of the oil film both taken consideration. Under such situation, the pad pivot elastic deformation and its stiffness are calculated using Hertz Contact Theory for various operating points of the rotor-bearing system. The finite element method is adopted to simulate the static coefficients of the fixed-tilting pad bearing, obtaining its oil film pressure distribution varied with the bearing eccentricity ratio. The corresponding dynamic stiffness and damping of the oil film are solved using partial derivative method. In addition, a special interest is put in investigating the effect of the series complex stiffness of the oil film and pad pivot, according to which, the equivalent dynamic characteristics are obtained. The results show that the relation between these two factors are complex and interactive, both of which have a significant influence on the static and dynamic performance of the bearing.

2021 ◽  
pp. 92-92
Author(s):  
Yuchuan Zhu ◽  
Zhengyi Jiang ◽  
Ling Yan ◽  
Yan Li ◽  
Fangfang Ai ◽  
...  

The multiphase fluid dynamics is used to model the oil film in the tilting-pad journal bearing. Particles are added to the lubricating oil and the change of loading capacity of oil film is studied numerically. The performance of the bearing under high-speed and heavy load are elucidated. The results show that the bearing capacity depends upon concentration, diameter and density of particles.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Yongliang Wang ◽  
Yu Gao ◽  
Ying Cui ◽  
Zhansheng Liu

Tilting pad bearings offer unique dynamic stability enabling successful deployment of high-speed rotating machinery. The model of dynamic stiffness, damping, and added mass coefficients is often used for rotordynamic analyses, and this method does not suffice to describe the dynamic behaviour due to the nonlinear effects of oil film force under larger shaft vibration or vertical rotor conditions. The objective of this paper is to present a nonlinear oil force model for finite length tilting pad journal bearings. An approximate analytic oil film force model was established by analysing the dynamic characteristic of oil film of a single pad journal bearing using variable separation method under the dynamicπoil film boundary condition. And an oil film force model of a four-tilting-pad journal bearing was established by using the pad assembly technique and considering pad tilting angle. The validity of the model established was proved by analyzing the distribution of oil film pressure and the locus of journal centre for tilting pad journal bearings and by comparing the model established in this paper with the model established using finite difference method.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Author(s):  
Maurice L. Adams ◽  
Michael A. Laurich

It has recently been shown that high-speed grinding can be applied to the finishing of ceramics with considerable improvements in throughput and quality. This will require new high-speed high-power centerless grinding spindles (7,000 RPM, 50 HP), with high-stiffness of three hundred and fifty million Newtons/meter (2 million lb/in). To meet these requirements a novel inside-out, three-pad, pivoting-pad oil-fed hydrodynamic journal bearing has been devised, built and tested. One of the three pad’s pivot point is supported by a hydraulically-actuated radial-motion loading piston. This provides real-time controllable preload to all three bearing pads, thereby controlling bearing stiffness, providing less-stiff spindle bearings for initial rough grinding and very high stiffness spindle bearings for precision finish grinding. Extensive bearing test data compare favorably with theoretically predicted bearing performance.


1991 ◽  
Vol 113 (3) ◽  
pp. 615-619 ◽  
Author(s):  
M. Tanaka

A new method of lubricant feeding is presented for tilting pad journal bearing and its effect on the thermohydrodynamic performance of the bearing is investigated theoretically and experimentally for various operating conditions. The new method can significantly reduce the maximum pad temperature compared with conventional methods, and its effect becomes pronounced with the increase in operating shaft speed. The method is promising for high speed journal pad bearing which is rapidly decreasing a safety margin against seizure due to the dangerously rising maximum pad temperature.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Yang Lihua ◽  
Qi Shemiao ◽  
Yu Lie

Tilting-pad gas bearings are widely used in high-speed rotating machines due to their inherent stability characteristics. This paper advances the analytical method for prediction of the dynamic performances of tilting-pad gas bearings. The main advantage of the analytical method is that the complete set of dynamic coefficients of tilting-pad gas bearings can be obtained. The predictions show that the perturbation frequency has the strong effects on the dynamic coefficients of gas bearings. In general, at lower perturbation frequency, the equivalent direct stiffness coefficients increase with frequency, whereas equivalent direct damping coefficients dramatically reduce. For higher perturbation frequency, the dynamic coefficients are nearly independent of the frequency. Moreover, the equivalent dynamic coefficients of four-pad tilting-pad gas bearing obtained by the method in this paper are in good agreement with those obtained by Zhu and San Andres [(2007), “Rotordynamic Performance of Flexure Pivot Hydrostatic Gas Bearings for Oil-Free Turbomachinery,” ASME J. Eng. Gas Turbines Power, 129(4), pp. 1020–1027] in the published paper. The results validate the feasibility of the method presented in this paper in calculating the dynamic coefficients of gas-lubricated tilting-pad bearings.


Author(s):  
Phuoc Vinh Dang ◽  
Steven Chatterton ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Filippo Cangioli

Journal bearings have been widely used in high-speed rotating machinery. The dynamic coefficients of oil-film force affect the machine unbalance response and machine stability. The oil-film force of hydrodynamic bearing is often characterized by a set of linear stiffness and damping coefficients. However the linear oil-film coefficients with respect to an equilibrium position of the journal are inaccurate when the bearing system vibrates with large amplitudes due to a dynamic load. The study on nonlinear oil-film forces is still rare and most papers are confined to theoretical analyses. The purpose of this paper is to derive some new non-linear force models (28-co., 24-co. and 36-co. models) to identify these dynamic coefficients based on experimental data. The fundamental test model is obtained from a Taylor series expansion of bearing reaction force. Tests were performed with a nominal diameter of 100mm and a length–to–diameter ratio of 0.7 using a suitable test rig in which it is possible to apply the static load in any direction. The results show that these three models are feasible to identify the oil-film forces in which the second-order oil-film coefficients received from the 24-co. model are more stable compared to those of other two nonlinear models.


Author(s):  
Steven Chatterton ◽  
Paolo Pennacchi ◽  
Andrea Vania ◽  
Mohamed Amine Hassini ◽  
Antoine Kuczkowiak

Abstract Many industrial rotating machines are equipped with hydrodynamic journal bearings, such as centrifugal compressors, steam turbines, pumps and motors. After some time from the installation, however, the surface of the bearings often presents imperfections and slight damages mainly caused by the presence of harder particles in the lubricant during start-ups and shut-downs, when the hydrodynamic mechanism is not well developed and the mixed lubrication can occur. The presence of scratches on a bearing can lead to variations of the oil film thickness which, in turn, causes significant degradation of the bearing hydrodynamic performance. For example, the reduction of the minimum oil-film thickness can lead to the increase in the local temperature, to local pressure peaks and, finally, to the failure of the bearing. Experimental data relating to scratches on journal bearings are extremely limited in the literature especially for tilting-pad journal bearings (TPJBs). An experimental activity was carried out to study the effect of artificial scratches on pads on the static and dynamic behaviors of a TPJB. The number of scratches, the depth and the axial position have been investigated and the dynamic coefficients have been estimated as well. The experimental results confirmed a degradation of the dynamic performance of the bearing in case of scratches, that it has has been also confirmed by means of numerical simulations.


Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract Tilting-pad journal bearings are widely used in turbomachinery industry due to their positive dynamic properties at high rotor speeds. However, the exact description of this dynamic behavior is still part of current research. This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa. Results of theoretical predictions are commonly derived from perturbation of stationary operation under static load. Therefore, experimental results for stationary operation including pad deflection under static load are presented first to characterize the investigated bearing. Measured results indicate considerable non-laminar flow in the upper region of the investigated range of rotor speeds. Second, dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. KCM-coefficients are obtained by fitting frequency dependent KC-characteristics to the KCM-model structure using least square approach. The wide range of rotating and excitation frequencies leads to subsynchronous as well as supersynchronous vibrations. Excitation forces are applied with multi-sinus and single-sinus characteristics. The latter one allows evaluation of KC-coefficients at the particular frequency ratio in the time domain. Here, frequency and time domain evaluation algorithms for dynamic coefficients are used in order to assess their special properties and quality. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


Sign in / Sign up

Export Citation Format

Share Document