scholarly journals Reduced sliding friction on metal injection molded (MIM) WC-Co hard metals

2021 ◽  
pp. 107020
Author(s):  
Christopher K. Dawari ◽  
Inzimam Haq ◽  
Kari Mönkkönen ◽  
Mika Suvanto ◽  
Jarkko J. Saarinen
2006 ◽  
Vol 34 (4) ◽  
pp. 237-255 ◽  
Author(s):  
M. Kuwajima ◽  
M. Koishi ◽  
J. Sugimura

Abstract This paper describes experimental and analytical studies of the dependence of tire friction on the surface roughness of pavement. Abrasive papers were adopted as representative of the microscopic surface roughness of pavement surfaces. The rolling∕sliding friction of tire tread rubber against these abrasive papers were measured at low slip velocities. Experimental results indicated that rolling∕sliding frictional characteristics depended on the surface roughness. In order to examine the interfacial phenomena between rubber and the abrasive papers, real contact length, partial slip, and apparent friction coefficient under vertical load and tangential force were analyzed with two-dimensional explicit finite element analysis in which slip-velocity-dependent frictional coefficients were considered. Finite element method results indicated that the sum of real contact area and local partial slip were larger for finer surfaces under the same normal and tangential forces. In addition, the velocity-dependent friction enhanced local slip, where the dependence of local slip on surface roughness was pronounced. It proved that rolling∕sliding friction at low slip ratio was affected by local frictional behavior at microslip regions at asperity contacts.


2019 ◽  
Vol 34 (3) ◽  
pp. 367-375
Author(s):  
L.-X. Wang ◽  
D.-F. Wang ◽  
L. Jiang ◽  
N. Bian ◽  
Q. Li ◽  
...  

Alloy Digest ◽  
2003 ◽  
Vol 52 (10) ◽  

Abstract Kaiser Aluminum alloy 4026 has high strength and good wear resistance, as well as galling resistance. It was developed for sliding friction resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating. Filing Code: AL-385. Producer or source: Tennalum, A Division of Kaiser Aluminum.


2020 ◽  
pp. 260-266
Author(s):  
V.E. Arkhipov ◽  
T.I. Murav’eva ◽  
M.S. Pugachev ◽  
O.O. Shcherbakova

The problems of changes in the coating structure depending on the composition of the sprayed mechanical mixture using copper particles and mixture of copper and zinc particles (" brass") and the effect of structural factors on the tribological properties of the deposited metal layer are considered. The results of X-ray structural, phase, chemical and durometric analyzes, as well as tribological testing of coatings are presented. It is found that structure with hardness of ≈102.7 HV is formed in the coating from mechanical mixture of particles of copper and aluminum oxide (corundum). Numerous pores are observed in the structure of the deposited metal layer, the main size of which does not exceed 2 μm. In the coating from mechanical mixture of particles copper, zinc and aluminum oxide (corundum), structure is formed based on copper with hardness of ≈106.5 HV, zinc — ≈49.7 HV, intermetallic compounds (γ- and ε-phases) — ≈168.7 HV, the mass fraction of which is 62.0, 7.9 and 24.2 %, respectively. Both coatings can be used in sliding friction pairs.


Sign in / Sign up

Export Citation Format

Share Document