Process Simulation-Based Design, Mold Construction and Mechanical Performance Evaluation of an Insert-Injection Molded Thermoplastic Polyurethane Part

2020 ◽  
Vol 35 (4) ◽  
pp. 385-397
Author(s):  
C. Quintana ◽  
N. Rull ◽  
P. J. Deniro ◽  
P. Frontini ◽  
F. Rueda
2016 ◽  
Vol 92 ◽  
pp. 15-26 ◽  
Author(s):  
Masoud Rahiminezhad Galankashi ◽  
Ehsan Fallahiarezoudar ◽  
Anoosh Moazzami ◽  
Noordin Mohd Yusof ◽  
Syed Ahmad Helmi

2018 ◽  
Vol 32 (4) ◽  
pp. 501-520 ◽  
Author(s):  
Cevdet Kaynak ◽  
S Deniz Varsavas

The purpose of this study was to compare the performance of polylactide (PLA)-based materials shaped by the traditional injection molding technique versus three-dimensional (3D)-printing additive manufacturing. Comparisons were performed not only for neat PLA but also for its thermoplastic polyurethane elastomer (TPU) blend and for its E-glass fiber (GF)-reinforced composites. Performance comparison of the injection-molded and 3D-printed specimens was especially conducted to compare their mechanical properties (strength–modulus–toughness) by tensile, flexural, and fracture toughness tests. Other comparisons such as their macro-level appearances, fracture surface morphology, and thermal behavior were also performed by photographic images, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. It can be concluded that the use of 3D-printing in the shaping of neat PLA and PLA/TPU blend was generally very beneficial; on the other hand, due to the differences in the orientation of the GF reinforcements, there could be certain reductions in the mechanical performance of PLA/GF and PLA/TPU/GF composite specimens.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1877
Author(s):  
Widha Kusumaningdyah ◽  
Tetsuo Tezuka ◽  
Benjamin C. McLellan

Energy transitions are complex and involve interrelated changes in the socio-technical dimensions of society. One major barrier to renewable energy transitions is lock-in from the incumbent socio-technical regime. This study evaluates Energy Product–Service Systems (EPSS) as a renewable energy market mechanism. EPSS offer electricity service performance instead of energy products and appliances for household consumers. Through consumers buying the service, the provider company is enabled to choose, manage and control electrical appliances for best-matched service delivery. Given the heterogenous market players and future uncertainties, this study aims to identify the necessary conditions to achieve a sustainable renewable energy market. Simulation-Based Design for EPSS framework is implemented to assess various hypothetical market conditions’ impact on market efficiency in the short term and long term. The results reveal the specific market characteristics that have a higher chance of causing unexpected results. Ultimately, this paper demonstrates the advantage of implementing Simulation-Based Design for EPSS to design retail electricity markets for renewable energy under competing market mechanisms with heterogenous economic agents.


Author(s):  
Takeshi D. Itoh ◽  
Takaaki Horinouchi ◽  
Hiroki Uchida ◽  
Koichi Takahashi ◽  
Haruka Ozaki

In automated laboratories consisting of multiple different types of instruments, scheduling algorithms are useful for determining the optimal allocations of instruments to minimize the time required to complete experimental procedures. However, previous studies on scheduling algorithms for laboratory automation have not emphasized the time constraints by mutual boundaries (TCMBs) among operations, which is important in procedures involving live cells or unstable biomolecules. Here, we define the “scheduling for laboratory automation in biology” (S-LAB) problem as a scheduling problem for automated laboratories in which operations with TCMBs are performed by multiple different instruments. We formulate an S-LAB problem as a mixed-integer programming (MIP) problem and propose a scheduling method using the branch-and-bound algorithm. Simulations show that our method can find the optimal schedules of S-LAB problems that minimize overall execution time while satisfying the TCMBs. Furthermore, we propose the use of our scheduling method for the simulation-based design of job definitions and laboratory configurations.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1949
Author(s):  
Ling Ding ◽  
Wei Lu ◽  
Jiaqi Zhang ◽  
Chuncheng Yang ◽  
Guofeng Wu

Literature has reported the successful use of 3D printed polyetheretherketone (PEEK) to fabricate human body implants and oral prostheses. However, the current 3D printed PEEK (brown color) cannot mimic the vivid color of oral tissues and thus cannot meet the esthetical need for dental application. Therefore, titanium dioxide (TiO2) and ferric oxide (Fe2O3) were incorporated into PEEK to prepare a series of tooth-color and gingival-color PEEK composites in this study. Through color measurements and mechanical tests, the color value and mechanical performance of the 3D printed PEEK composites were evaluated. In addition, duotone PEEK specimens were printed by a double nozzle with an interface between tooth-color and gingival-color parts. The mechanical performance of duotone PEEK with two different interfaces (horizontal and vertical) was investigated. With the addition of TiO2 and Fe2O3, the colors of 3D printed PEEK composites become closer to that of dental shade guides. 3D printed PEEK composites generally demonstrated superior tensile and flexural properties and hence have great potential in the dental application. In addition, duotone 3D printed PEEK with a horizontal interfacial orientation presented better mechanical performance than that with a vertical one.


Sign in / Sign up

Export Citation Format

Share Document