Wear properties of textured lubricant films filled with graphite and polytetrafluoroethylene (PTFE) via laser surface texturing (LST)

2021 ◽  
pp. 107414
Author(s):  
Hai Wang ◽  
Annan Sun ◽  
Xiaowen Qi ◽  
Yu Dong ◽  
Bingli Fan
Author(s):  
Lev Rapoport ◽  
Alexey Moshkovich ◽  
Vladislav Perfilyev ◽  
Igor Lapsker ◽  
Gregory Halperin ◽  
...  

Incorporation of solid lubricant into micro-reservoirs produced by Laser Surface Texturing (LST) and its effect on the tribological properties of surfaces under dry friction is studied. The density of the dimple reservoirs and the height of the bulges around them are investigated in terms of the longevity of solid lubricant films burnished on LST steel surfaces. Friction tests were performed using a ball-on-flat device. Optimum density (40–50%) of the dimples is revealed. It is shown that the adhesion of solid lubricant in the space between the dimples is provided by mechanical engagement of particles in the rough surface and by smearing the solid lubricant around the dimples. Best results are obtained with the surfaces that were lapped to half of the height of bulges. Long wear life of burnished film on LST steel surfaces is apparently provided by preservation of thin MoS2 film around the bulges and by supply of solid lubricant from the dimples to the surface. The effect of repeated burnishing on wear life of solid lubricant films was studied. Repeating burnishing leading to increasing the density of solid lubricant films increases the wear life.


2011 ◽  
Vol 686 ◽  
pp. 706-710
Author(s):  
Jie Jiang ◽  
Dang Sheng Xiong ◽  
Jian Liang Li ◽  
Yan Shi

Components of space machines often works at high temperature and vacuum, or on other rigour conditions, the traditional liquid lubricant cannot satisfy the requirement. The common solid lubricant is hard to supply between two friction surfaces continuously and it is easily decomposed and failure at high temperature. It is an urgent need to study a new type of lubrication technology. In this paper, the surface of 1Cr18Ni9Ti with high hardness and micro dimples was prepared through laser texturing and plasma molybdenizing/plasma nitriding duplex treatment. The textured surface was coated with MoS2 lubricating film and the friction and wear properties from room temperature to high temperature were evaluated. The results show that the laser surface textured dimples trap hard abrasive particles and reduce the damage to the lubricating film, and thus decrease the wear rate. The optimum dimple density of 7.1% is obtained. At elevated temperature, the wear rate of molybdenized texture or nitrided texture is lower than that of the matrix and single textured surface.


Friction ◽  
2021 ◽  
Author(s):  
Chia-Jui Hsu ◽  
Andreas Stratmann ◽  
Simon Medina ◽  
Georg Jacobs ◽  
Frank Mücklich ◽  
...  

AbstractLaser surface texturing (LST) has been proven to improve the tribological performance of machine elements. The micro-scale patterns manufactured by LST may act as lubricant reservoirs, thus supplying oil when encountering insufficient lubrication. However, not many studies have investigated the use of LST in the boundary lubrication regime, likely due to concerns of higher contact stresses that can occur with the increasing surface roughness. This study aims to examine the influence of LST on the fatigue lifetime of thrust rolling bearings under boundary lubrication. A series of periodic patterns were produced on the thrust rolling bearings, using two geometrically different designs, namely cross and dimple patterns. Base oil ISO VG 100 mixed with 0.05 wt% P of zinc dialkyldithiophosphate (ZDDP) was supplied. The bearings with cross patterns reduce the wear loss by two orders of magnitude. The patterns not only retain lubricant in the textured pockets but also enhance the formation of an anti-wear tribofilm. The tribofilm generation may be improved by the higher contact stresses that occur when using the textured surface. Therefore, in contrast to the negative concerns, the ball bearings with cross patterns were instead found to increase the fatigue life by a factor of three.


2018 ◽  
Vol 70 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Shuwen Wang ◽  
Feiyan Yan ◽  
Ao Chen

Purpose The purpose of this paper is to investigate the tribological effects of laser surface texturing (LST) and residual stress on functional surfaces. Design/methodology/approach Three different surface textures (circular dimple, elliptical dimple and groove) with two different textured area ratios (10 and 20 per cent) are designed and fabricated by a Picosecond Nd YAG Laser machine. The friction and wear performance of textured specimens is tested using a UMT-2 friction and wear testing machine in mixed lubrication. Findings Test results show that elliptical dimples exhibit the best performance in wear resistance, circular dimples in friction reduction and grooves in stabilization of friction. The surfaces with larger textured area density exhibit better performance in both friction reduction and wear resistance. The improved performance of LST is the coupled effect of surface texture and residual stress. Originality/value The findings of this study may provide guidance for optimal design of functional surface textures in reciprocating sliding contacts under mixed or hydrodynamic lubrication, which can be used in automotive and other industrial applications.


Author(s):  
Tiffany Davis ◽  
Jian Cao ◽  
Wei Chen ◽  
Q. Jane Wang ◽  
Cedric Xia ◽  
...  

Surface texturing has become a valuable technique for reducing friction and wear in contacting parts; laser surface texturing is one such method used to create micro-dimples on the interface surface. This work investigates the surface material property variation caused by laser surface texturing. The hardness and modulus of elasticity of a steel laser surface texture sample were evaluated near the dimples and away from the dimpled zone through nano-indentation. Resulting data shows that no significant difference exists between the material properties from the two positions. An alternate technique for surface texture generation was also explored, involving the use of micro-punches to create surface features in a metal sample. Computational simulations were performed using a second material underneath a thin copper sheet. The second material was present to serve as a support and to allow extensive deformation of the top material. The choice of the support material and ratio of material thicknesses was optimized to minimize pile up. Trials were conducted for three base supporting materials: PTFE, PMMA, and aluminum. Results show that PMMA performed better than the other materials. Positive deflection was minimized when the PMMA thickness was at least fifteen times that of the copper sheet. Physical experiments were completed with a thin copper sheet to verify the results. An array of micro-indentations was also created in a bulk steel sample. In order to assess the effect of dimpling via micro-forming, nano-indentation was performed near and far from the deformed material of the dimples. Similar to the laser textured sample, no significant differences were found between the two locations.


2016 ◽  
Vol 68 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Dawit Zenebe Segu ◽  
Pyung Hwang

Purpose – The purpose of this paper is to investigate and discuss the effect of multi-shape laser surface texturing (LST) steel surfaces on tribological performance. Design/methodology/approach – The textured surface with some specific formula arrays was fabricated by laser ablation process by combining patterns of circles and triangles, circles and squares and circles and ellipses. The tribological test was performed by a flat-on-flat tribometer under dry and lubrication conditions, and results were compared with that of untextured surface. Findings – The results showed that the textured surface had better friction coefficient performance than the untextured surface due to hydrodynamic lubrication effect. Through an increase in sliding speed, the beneficial effect of LST performance was achieved under dry and lubrication conditions. Originality/value – This paper develops multi-shape LST steel surfaces for improving the friction and wear performance under dry and lubrication conditions.


Author(s):  
Venkata Sai Prabhu Suraj Nanduru ◽  
Nagalla Siva Ramakrishna ◽  
Ramineni Surendra Babu ◽  
P. Dinesh Babu ◽  
P. Marimuthu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document