copper sheet
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 61)

H-INDEX

15
(FIVE YEARS 5)

Author(s):  
Michael Bojdys

Silicon-based anodes with lithium ions as charge carriers have the highest predicted theoretical specific capacity of 3579 mA h g (for LiSi). Contemporary electrodes do not achieve this theoretical value largely because conventional production paradigms rely on the mixing of weakly coordinated components. In this paper, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The porous, semi-conducting organic framework (i) adheres to the current collector on which it grows via cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (iii) enables selective transport of electrolyte and Li-ions through pores of defined size. The resulting anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies using a conventional layered Ni-rich oxide cathode.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1452
Author(s):  
Taichi Murakami ◽  
Yu Kuwajima ◽  
Ardi Wiranata ◽  
Ayato Minaminosono ◽  
Hiroki Shigemune ◽  
...  

Demand for variable focus lens is increasing these days due to the rapid development of smart mobile devices and drones. However, conventional mechanical systems for lenses are generally complex, cumbersome, and rigid (e.g., for motors and gears). This research proposes a simple and compact liquid lens controlled by an electro hydro dynamics (EHD) pump. In our study, we propose a do-it-yourself (DIY) method to fabricate the low-cost EHD lens. The EHD lens consists of a polypropylene (PP) sheet for the exterior, a copper sheet for the electrodes, and an acrylic elastomer for the fluidic channel where dielectric fluid and pure water are filled. We controlled the lens magnification by changing the curvature of the liquid interface between the dielectric fluid and pure water. We evaluated the magnification performance of the lens. Moreover, we also established a numerical model to characterize the lens performance. We expect to contribute to the miniaturization of focus-tunable lenses.


2021 ◽  
Vol 904 ◽  
pp. 382-386
Author(s):  
Niwat Mookam ◽  
Prajak Jattakul ◽  
Tipsuda Rakphet ◽  
Kannachai Kanlayasiri

This research studies effects of the brazing time on interfacial microstructure of brazed joint between the porous copper foam (PCF) and Cu substrate using CuNiSnP amorphous filler metal. To examine the interfacial microstructure and its properties, an assessment of PCF/CuNiSnP/Cu brazed joints was conducted after electric furnace brazing under hydrogen (H2) atmosphere. The results showed that the interfacial microstructure was thick for short brazing time specimens and thin for prolonged brazing time specimens. The interfacial microstructures consisted of Cu-rich solid solution, (Cu, Ni)3P, and Cu3P as a eutectic structure discovered in the brazing region at different brazing times of 5, 10, and 20 min. Only the Cu-rich solid solution and (Cu, Ni)3P were found in the specimen with brazing time of 30 min. indicating that different brazing times affected interfacial microstructures and therefore reliability of the brazed joints.


Author(s):  
Mithlesh Kumar Mahto ◽  
Adarsh Kumar ◽  
Avinash Ravi Raja ◽  
Meghanshu Vashista ◽  
Mohd Zaheer Khan Yusufzai

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mondher Dhaouadi ◽  
Fethi Choubani

In this paper, a novel 3D planar inverted-L antenna (PILA) Ultrahigh Frequency (UHF) Radio Frequency Identification (RFID) tag mountable on metallic surfaces is proposed for the Internet of Things (IoT) indoor localization applications. The proposed tag antenna (45 mm × 82 mm × 4 mm or 0.137λ × 0.25λ × 0.012λ) is designed for mounting on metallic objects. The 3D PILA antenna is fabricated using a copper sheet of thickness 1 mm and air as the dielectric substrate in order to minimize costs for materials and realization. In the design, T-slot has been inserted in the radiating element for tuning of the tag’s resonance for achieving good matching with the chip. Also, a simple equivalent circuit model has been obtained to analyze the impedance of the 3D PILA. Based on the optimized design, the fabricated prototype has been measured in the anechoic chamber. The resonant frequency of the proposed tag is stable, and it is not affected much by the metallic object. The measurement results of the antenna prototype demonstrated a reasonable agreement with the simulation results, and a read range of 3.6 m was measured inside an anechoic chamber. Most importantly, in the building hallway, the proposed tag is able to achieve a maximum read distance of 18 m with a transmitted power of 31.5 dBm at 867 MHz when placed on metal. With the 3D PILA antenna structure, the proposed antimetal tag is a suitable solution that can be integrated into an indoor localization scenario.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhikang Shen ◽  
Yuquan Ding ◽  
Wei Guo ◽  
Wentao Hou ◽  
Xiaochao Liu ◽  
...  

AbstractThe current investigation of refill friction stir spot welding (refill FSSW) Al alloy to copper primarily involved plunging the tool into bottom copper sheet to achieve both metallurgical and mechanical interfacial bonding. Compared to conventional FSSW and pinless FSSW, weld strength can be significantly improved by using this method. Nevertheless, tool wear is a critical issue during refill FSSW. In this study, defect-free Al/copper dissimilar welds were successfully fabricated using refill FSSW by only plunging the tool into top Al alloy sheet. Overall, two types of continuous and ultra-thin intermetallic compounds (IMCs) layers were identified at the whole Al/copper interface. Also, strong evidence of melting and resolidification was observed in the localized region. The peak temperature obtained at the center of Al/copper interface was 591 °C, and the heating rate reached up to 916 °C/s during the sleeve penetration phase. A softened weld region was produced via refill FSSW process, the hardness profile exhibited a W-shaped appearance along middle thickness of top Al alloy. The weld lap shear load was insensitive to the welding condition, whose scatter was rather small. The fracture path exclusively propagated along the IMCs layer of Cu9Al4 under the external lap shear loadings, both CuAl2 and Cu9Al4 were detected on the fractured surface on the copper side. This research indicated that acceptable weld strength can be achieved via pure metallurgical joining mechanism, which has significant potential for the industrial applications.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hong Li ◽  
Tiange Chen ◽  
Yanfeng Lu ◽  
Xinyu Fu ◽  
Xingwen Chu ◽  
...  

Dense copper oxide nanoribbons arrays are prepared on a copper sheet by using a low-temperature hydrothermal method. The wettability of the surface modified by stearic acid is superhydrophobic, and the water contact angle is 153.6°. It is demonstrated that the reversible transition from superhydrophilicity to superhydrophobicity is successfully achieved by heat treatment and re-modification, and the whole process can be accomplished in 170 s. Potentiodynamic polarization curves and Nyquist curves show that these superhydrophobic surfaces have good corrosion resistance and superior durability.


Author(s):  
Onkar Joshi

Water is essential to life. The origin and continuation of mankind is based on water. The supply of drinking water is an important problem for the developing countries. The wooden box has a thickness of 8mm. It consists of a top cover of transparent glass with a tilt of 18°, 26° and is coated with black paint to absorb the maximum possible solar energy. The yield of the single basin solar still is very less and it increases considerably when the solar still was built with copper sheet. An analysis of single slope solar still has done on different tilt angle to optimizing study of tilt angle. They greatly improve the rate of evaporation and the rate of condensation on the cooler surface. The efficiency is higher for solar still made up of copper sheet and its output we have got 1.24 for 18° angle. The optimized tilt angle gave more efficiency than other tilt angle. The optimize water depth is 18mm for 18° angle. This cost-effective design is expected to provide the rural communities an efficient way to convert the brackish water in to potable water.


Sign in / Sign up

Export Citation Format

Share Document