Antibodies to cryptic epitopes on HLA class I and class II heavy chains bound to single antigen beads: Clinically relevant?

2021 ◽  
pp. 101482
Author(s):  
Mepur H. Ravindranath ◽  
Edward J. Filippone ◽  
Carly J. Amato-Menker ◽  
Fernando A. Arosa ◽  
Ballabh Das ◽  
...  
2018 ◽  
Vol 7 (12) ◽  
pp. 6308-6316 ◽  
Author(s):  
Tong-Min Wang ◽  
Ting Zhou ◽  
Yong-Qiao He ◽  
Wen-Qiong Xue ◽  
Jiang-Bo Zhang ◽  
...  

2016 ◽  
Vol 72 ◽  
pp. 19-24 ◽  
Author(s):  
Maria José Franco Brochado ◽  
Daniela Francisca Nascimento ◽  
Wagner Campos ◽  
Neifi Hassan Saloum Deghaide ◽  
Eduardo Antonio Donadi ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi120-vi120
Author(s):  
Konstantina Kapolou ◽  
Lena Katharina Freudenmann ◽  
Ekaterina Friebel ◽  
Leon Bichmann ◽  
Burkhard Becher ◽  
...  

Abstract We provide a comprehensive analysis of the antigenic landscape of glioblastoma using a multi-omics approach including ligandome mapping of the Human Leukocyte Antigen (HLA) ligandome, next generation sequencing (NGS) as well as an in-depth characterization of tumor-infiltrating lymphocytes (TIL) using mass cytometry and ultra-deep sequencing of the T-cell receptor (TCR). Tumor-exclusive HLA class I and class II ligands (immune precipitation and LC-MS/MS) of 24 isocitrate dehydrogenase 1 wild type glioblastoma samples and 10 autologous primary glioblastoma cell lines were defined in comparison to an HLA ligandome normal tissue reference database (n > 418). We found 11,496 glioblastoma exclusive HLA class I ligands (2,064 shared with cell lines; 3,754 on ≥ 2 glioblastoma samples). On the source protein level, 239 glioblastoma exclusive proteins were identified; among them 54 were also found in cell lines. For HLA class II ligands the analysis revealed 11,870 glioblastoma exclusive peptides (444 shared with cell lines; 3,420 on ≥ 2 glioblastoma samples) and 278 glioblastoma exclusive proteins; among which 18 were present also in cell lines. Moreover, whole-exome sequencing and whole RNA sequencing of 13 tumor samples was performed with the aim to predict neoantigens. On average 5,662 somatic missense effects were identified per patient (min: 4,258; max: 7,479). Candidate peptides are grouped into (i) in silico predicted neoepitopes, (ii) tumor-exclusivity on HLA, (iii) gene expression (e.g. cancer testis antigens). Top-ranking candidates from each group will be tested with regards to their immunogenicity in an autologous setting (TIL, peripheral blood mononuclear cells, patient derived tumor cells). Finally, the peptide and immunogenicity data is correlated with the immune phenotype of the TIL compartment as well as the TCR repertoire of the sample.


2019 ◽  
Vol 29 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Reem Ameen ◽  
Salem H. Al Shemmari ◽  
Steven G.E. Marsh

Objective: The aim of this study was to assess the HLA haplotype frequencies and genetic profiles of the Kuwaiti population. Materials and Methods: Whole venous blood was obtained from 595 healthy, unrelated Kuwaiti volunteers. The study population was genotyped for HLA class I (HLA-A, HLA-B, and HLA-C) and class II (HLA-DRB1 and HLA-DQB1) loci using sequence-specific oligonucleotide (SSO) probe-based hybridization and high-resolution HLA genotyping. Haplotype frequencies were estimated using an implementation of the expectation maximization algorithm that resolves both phase and allelic ambiguity. The Kuwaiti population was compared with other populations from the US National Marrow Donor Program (NMDP), by running a principal component analysis (PCA) on the relevant haplotype frequencies. Results: The most common HLA class I alleles in Kuwait were HLA-A*02:01g, HLA-C*06:02g, and HLA-B*50:01g with frequencies of 16, 14, and 12%, respectively. The most common HLA class II alleles in Kuwait were HLA-DQB1*02:01g and HLA-DRB1*07:01 with frequencies of 29.7 and 16.5%, respectively. The most common Kuwaiti haplotype observed was HLA-A*02:01g∼HLA-C*06:02g∼HLA-B*50:01g∼HLA-DRB1*07:01∼HLA-DQB1*02:01g at a frequency of 2.3%. The PCA demonstrated close genetic proximity of the Kuwaiti population with Middle Eastern, Southeast Asian, and North African populations in the NMDP. Conclusion: Identifying the haplotype diversity in the Kuwaiti population will contribute to the selection of an HLA-match for HSCT, disease associations, pharmacogenomics, and knowledge of pop­ulation HLA diversity.


Diagnostics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 47 ◽  
Author(s):  
Alma D. Del Angel-Pablo ◽  
Ana Itzel Juárez-Martín ◽  
Gloria Pérez-Rubio ◽  
Enrique Ambrocio-Ortiz ◽  
Luis A. López-Flores ◽  
...  

Genetic variability defends us against pathogen-driven antigens; human leucocyte antigens (HLA) is the immunological system in charge of this work. The Mexican mestizo population arises mainly from the mixture of three founder populations; Amerindian, Spaniards, and a smaller proportion of the African population. We describe allele and haplotype frequencies of HLA class I (-A and -B) and class II (-DRB1 and -DQB1), which were analyzed by PCR-SSP in Mexican mestizo from three urban populations of Mexico: Chihuahua-Chihuahua City (n = 88), Mexico City-Tlalpan (n = 330), and Veracruz-Xalapa (n = 84). The variability of the allele HLA class I and class II among the three regions of Mexico are in four alleles: HLA-A*24:02 (36.39%), -B*35:01 (16.04%), -DRB1*04:07 (17.33%), and -DQB1*03:02 (31.47%), these alleles have been previously described in some indigenous populations. We identified 5 haplotypes with a frequency >1%: HLA-A*02:01-B*35:01-DRB1*08:02-DQB1*04:02, A*68:01-B*39:01-DRB1*08:02-DQB1*04:02, A*02:01-B*35:01-DRB1*04:07-DQB1*03:02, A*68:01-B*39:01-DRB1*04:07-DQB1*03:02, and A*01:01-B*08:01-DRB1*03:01-DQB1*02:01. Also, the haplotype A*02:01-B*35:01-DRB1*08:02-DQB1*04:02 was identified in Tlalpan and Xalapa regions. Haplotype A*01:01-B*08:01-DRB1*03:01-DQB1*02:01 was found only in Tlalpan and Chihuahua. In the Xalapa region, the most frequent haplotype was A*24:02-B*35:01-DRB1*04:07-DQB1*03:02. These alleles and haplotypes have been described in Amerindian populations. Our data are consistent with previous studies and contribute to the analysis of the variability in the Mexican population.


Sign in / Sign up

Export Citation Format

Share Document