scholarly journals IMMU-08. THE ANTIGENIC LANDSCAPE OF GLIOBLASTOMA - REFINING THE TARGETS FOR IMMUNOTHERAPY

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi120-vi120
Author(s):  
Konstantina Kapolou ◽  
Lena Katharina Freudenmann ◽  
Ekaterina Friebel ◽  
Leon Bichmann ◽  
Burkhard Becher ◽  
...  

Abstract We provide a comprehensive analysis of the antigenic landscape of glioblastoma using a multi-omics approach including ligandome mapping of the Human Leukocyte Antigen (HLA) ligandome, next generation sequencing (NGS) as well as an in-depth characterization of tumor-infiltrating lymphocytes (TIL) using mass cytometry and ultra-deep sequencing of the T-cell receptor (TCR). Tumor-exclusive HLA class I and class II ligands (immune precipitation and LC-MS/MS) of 24 isocitrate dehydrogenase 1 wild type glioblastoma samples and 10 autologous primary glioblastoma cell lines were defined in comparison to an HLA ligandome normal tissue reference database (n > 418). We found 11,496 glioblastoma exclusive HLA class I ligands (2,064 shared with cell lines; 3,754 on ≥ 2 glioblastoma samples). On the source protein level, 239 glioblastoma exclusive proteins were identified; among them 54 were also found in cell lines. For HLA class II ligands the analysis revealed 11,870 glioblastoma exclusive peptides (444 shared with cell lines; 3,420 on ≥ 2 glioblastoma samples) and 278 glioblastoma exclusive proteins; among which 18 were present also in cell lines. Moreover, whole-exome sequencing and whole RNA sequencing of 13 tumor samples was performed with the aim to predict neoantigens. On average 5,662 somatic missense effects were identified per patient (min: 4,258; max: 7,479). Candidate peptides are grouped into (i) in silico predicted neoepitopes, (ii) tumor-exclusivity on HLA, (iii) gene expression (e.g. cancer testis antigens). Top-ranking candidates from each group will be tested with regards to their immunogenicity in an autologous setting (TIL, peripheral blood mononuclear cells, patient derived tumor cells). Finally, the peptide and immunogenicity data is correlated with the immune phenotype of the TIL compartment as well as the TCR repertoire of the sample.

Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 1023-1029 ◽  
Author(s):  
J Donohue ◽  
M Homge ◽  
NA Kernan

Abstract To help elucidate the mechanism responsible for graft failure (GF) following a T-cell depleted bone marrow transplant (BMT) from an unrelated donor, five patients (2 chronic myelogenous leukemia, 1 acute undifferentiated leukemia, 2 myelodysplastic syndrome) who experienced this complication were studied. All patients were HLA class I identical with their donors as determined by serology and one-dimensional isoelectric focusing (IEF); two were serologically matched with their donors for HLA class II antigens, whereas three donor-recipient pairs were serologically mismatched for one HLA-DR antigen. All patients received total body irradiation (fractionated, 1,500 rads), VP-16 (750 mg/m2), and cyclophosphamide (120 mg/kg) pre-BMT and antithymocyte globulin (15 mg/kg every other day) and methylprednisolone (2 mg/kg) post-BMT. Three patients experienced primary nonengraftment and two experienced secondary GF. Peripheral blood mononuclear cells obtained from the patients at the time of GF were studied to examine their functional and phenotypic characteristics. Emerging cells were of host origin and were found to be specifically cytotoxic to donor target cells and suppressive to the in vitro growth of donor BM, especially in the cases of primary nonengraftment. Peripheral blood mononuclear cells from these patients were expanded to form T-cell lines (TcLs). The cytotoxic activities of TcLs were tested in the presence of blocking MoAbs directed against various HLA determinants in an attempt to determine if HLA antigens expressed on donor cells were the target for cytotoxicity. The observed cytotoxic activity was blocked by antibodies to HLA-B, -C (1 patient), HLA-DR (1 patient), and HLA-DQ (1 patient). In two cases, antidonor cytotoxicity could not be blocked by MoAb directed against HLA-A, -B, -C, or -DR. Phenotypic characterization of four successfully maintained TcLs showed 100% CD3+ cells with 100% CD4+ (3 patients) or 50% CD4+/50% CD8+ (1 patient). In two of the three patients with 100% CD4+ cells, antidonor cytotoxicity was blocked by an anti-HLA class II MoAb. In contrast to our previous findings in cases of GF following T-cell-depleted HLA nonidentical family member BMT in which host T cells were CD8+ and cytotoxicity was directed against HLA class I antigens, our present study indicates host T cells emerging at the time of GF following BMT from an HLA class I IEF-identical unrelated donor can be of the CD4+ subset and seem to be capable of recognizing antigenic disparities in the HLA class II region.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 1023-1029 ◽  
Author(s):  
J Donohue ◽  
M Homge ◽  
NA Kernan

To help elucidate the mechanism responsible for graft failure (GF) following a T-cell depleted bone marrow transplant (BMT) from an unrelated donor, five patients (2 chronic myelogenous leukemia, 1 acute undifferentiated leukemia, 2 myelodysplastic syndrome) who experienced this complication were studied. All patients were HLA class I identical with their donors as determined by serology and one-dimensional isoelectric focusing (IEF); two were serologically matched with their donors for HLA class II antigens, whereas three donor-recipient pairs were serologically mismatched for one HLA-DR antigen. All patients received total body irradiation (fractionated, 1,500 rads), VP-16 (750 mg/m2), and cyclophosphamide (120 mg/kg) pre-BMT and antithymocyte globulin (15 mg/kg every other day) and methylprednisolone (2 mg/kg) post-BMT. Three patients experienced primary nonengraftment and two experienced secondary GF. Peripheral blood mononuclear cells obtained from the patients at the time of GF were studied to examine their functional and phenotypic characteristics. Emerging cells were of host origin and were found to be specifically cytotoxic to donor target cells and suppressive to the in vitro growth of donor BM, especially in the cases of primary nonengraftment. Peripheral blood mononuclear cells from these patients were expanded to form T-cell lines (TcLs). The cytotoxic activities of TcLs were tested in the presence of blocking MoAbs directed against various HLA determinants in an attempt to determine if HLA antigens expressed on donor cells were the target for cytotoxicity. The observed cytotoxic activity was blocked by antibodies to HLA-B, -C (1 patient), HLA-DR (1 patient), and HLA-DQ (1 patient). In two cases, antidonor cytotoxicity could not be blocked by MoAb directed against HLA-A, -B, -C, or -DR. Phenotypic characterization of four successfully maintained TcLs showed 100% CD3+ cells with 100% CD4+ (3 patients) or 50% CD4+/50% CD8+ (1 patient). In two of the three patients with 100% CD4+ cells, antidonor cytotoxicity was blocked by an anti-HLA class II MoAb. In contrast to our previous findings in cases of GF following T-cell-depleted HLA nonidentical family member BMT in which host T cells were CD8+ and cytotoxicity was directed against HLA class I antigens, our present study indicates host T cells emerging at the time of GF following BMT from an HLA class I IEF-identical unrelated donor can be of the CD4+ subset and seem to be capable of recognizing antigenic disparities in the HLA class II region.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4518-4518 ◽  
Author(s):  
Daniel J. Kowalewski ◽  
Mirle Schemionek ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
Tim H. Brümmendorf ◽  
...  

Abstract Despite the success of targeted therapy with tyrosine kinase inhibitors (TKIs), chronic myeloid leukemia (CML) remains largely incurable. Immunotherapy, and in particular multi-peptide vaccination, may be a promising approach to eliminate residual CML cells. As of now, a multitude of potential vaccine targets have been proposed based on reverse immunology and functional genomic approaches focusing either on BCR-ABL junction peptides, which represent CML-specific neo-antigens, or on aberrantly expressed self-proteins such as WT-1, PR and hTERT. However, the results of clinical studies employing such antigens have so far not been encouraging. This might in part be due to the inherent limitations of the above mentioned approaches: evidence of natural presentation of the predicted epitopes is lacking and the correlation of transcript abundance and HLA restricted presentation of the corresponding gene product has been shown to be skewed. Modern mass spectrometry, on the other hand, enables the comprehensive analysis of the entirety of naturally presented HLA ligands on tissues of interest, termed the HLA ligandome. Here we implemented this direct approach and comparatively mapped the HLA ligandome landscape of 16 primary CML samples and 40 healthy volunteer (HV) controls (30 blood and 10 bone marrow samples). We identified more than 30,000 different naturally presented HLA class I ligands representing ~10,000 source proteins. Regression analysis suggests source protein identifications on CML (4,337 different proteins) to attain >95% of maximum achievable coverage with the implemented analytical setup. Based on this extensive dataset, we investigated the HLA restricted presentation of established CML-associated/specific antigens and applied a novel approach defining tumor-associated antigens strictly based on exclusive and frequent representation in CML ligandomes. Strikingly, we found the vast majority of previously described antigens including wild-type BCR protein (6% CML, 5% HV), Myeloperoxidase (56% CML, 15% HV) and Proteinase 3 (38% CML, 11% HV) to be (also) represented on normal PBMC or BMNC. No evidence of naturally presented BCR-ABL junction peptides was found. However, we identified a panel of 7 LiTAAs (ligandome-derived tumor-associated antigens) represented by 16 different HLA ligands, showing CML-exclusive representation in ≥25% of CML patient ligandomes. As CD4+ T cells mediate important indirect and direct effects in anti-tumor immunity, we further applied our approach to HLA class II ligandomes of 15 CML patients and 18 HV (13 blood and 5 bone marrow samples), identifying more than 9,000 different naturally presented HLA class II ligands (1,900 source proteins). Applying the same antigen-ranking strategy as described for HLA class I, we identified 7 additional HLA class II LiTAAs represented by 50 corresponding LiTAPs (ligandome-derived tumor-associated peptides). Overlap analysis of CML-exclusive source proteins revealed 6 proteins to be represented both in HLA class I and II ligandomes. Notably, for Galectin-1, which shows CML-exclusive representation in 19% of HLA class I and 13% of HLA class II ligandomes, one of the HLA class II ligands was found to contain a complete, embedded HLA class I peptide. Such naturally presented embedded HLA ligands might present optimal vaccine candidates that are recognized by both, CD4+ and CD8+ T cells. Functional analysis of the here defined HLA class I and II LiTAPs with regard to induction of T cell responses is presently ongoing and serves to validate them as prime targets for the development of an off-the-shelf peptide vaccination in CML patients. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4046-4046 ◽  
Author(s):  
Annika Nelde ◽  
Heiko Schuster ◽  
Daniel J. Kowalewski ◽  
Lothar Kanz ◽  
Helmut R. Salih ◽  
...  

Abstract Several studies demonstrated that peptide-based cancer immunotherapy can induce specific immune responses and affect clinical outcome in a variety of different cancer entities. We recently conducted a study, which directly characterized the antigenic landscape of acute myeloid leukemia (AML) by mass spectrometric analysis of naturally presented HLA ligands and identified a panel of AML-specific CD4+ as well as CD8+ T-cell epitopes as suitable targets for T-cell based immunotherapy (Berlin et al. Leukemia 2015). One main reason for the high relapse rates in AML patients after standard polychemotherapy and allogeneic stem cell transplantation is the presence of minimal residual disease (MRD), which is associated with the persistence of leukemic stem cells (LSCs) in the bone marrow of patients. For clinically effective immunotherapy it is therefore indispensable to target the highly chemotherapy resistant LSCs. Here we present a mass spectrometry-based study, which for the first time analyzes the naturally presented HLA ligandome of stem cell enriched (LSCenr) fractions of primary AML samples to identify novel LSC-associated antigens using the approach of direct peptide isolation and identification. The enrichment of LSCs was performed using fluorescence-activated cell sorting of the originally described phenotype of lineage-negative CD34+CD38- cells of PBMCs from eight AML patients. The original stem cell containing population of 1-3% within the PBMCs of most patients was enriched to >90% purity with cell counts of 20-200x106 for the LSCenr fraction per sample. Consistent with our own previous results, all samples showed comparable expression levels of HLA class I molecules on primary leukemia blasts as well as for the LSCenr fractions, with HLA class I molecule counts ranging from 145,000 to 175,000 molecules/cell for the LSCenr fractions. To specifically identify leukemia-associated antigens on LSCenr cells, the HLA ligandome results obtained from the sorted LSCenrfractions were combined with data acquired from AML blasts of 20 AML patients (HLA class I n=19, HLA class II n=20) in previous studies as well as our normal tissue database that comprises 153 HLA class I and 82 HLA class II ligandomes of various healthy tissues (e.g. blood, bone marrow, spleen, kidney, liver, brain, skin, ovary, bowl). We identified more than 14,600 different naturally presented HLA class I ligands representing ̴6,500 source proteins on LSCenr fractions of primary AML samples (n=8) and their autologous blast cells by mass spectrometry. Overlap analysis of the HLA class I ligandomes of LSCenr fractions and autologous AML blasts with the benign peptidome revealed 45.4% (3,132/6,896) and 40.2% (4,922/12,244) of the LSCenr fraction and the autologous AML blast ligandomes to be represented in the benign-associated HLA ligandome, respectively. 79.1% (5,458/6,896) of the mapped LSCenr fraction ligandome was also presented on autologous AML blasts. 1,029 (14.9%) of these identified HLA class I ligands were presented exclusively on LSCenr fractions and not found on autologous AML blasts, previously analyzed AML blasts or any benign tissue. Furthermore, we were able to identify more than 8,000 different naturally presented HLA class II ligands representing ̴1,700 source proteins. Overlap of the HLA class II ligandomes revealed 45.0% (2,800/4,624) and 39.9% (2,706/6,790) of the LSCenr fraction and autologous AML blast ligandomes to be represented in the benign-associated HLA ligands, respectively. The HLA ligandomes of the LSCenr fraction and the autologous AML blasts showed an overlap of 69.7% (3,224/4,624). 941 (11.5%) HLA class II ligands showed exclusive representation in the LSCenr fraction ligandomes and were never identified on AML blast or benign tissue. These LSC-associated peptides represent highly interesting targets for immunotherapeutic approaches in AML patients and will be further evaluated for their potential to elicit a specific T-cell response. Taken together these preliminary results prove the feasibility of our approach to enrich leukemic progenitor cells of primary AML samples for the successful isolation and identification of HLA presented peptides associated with enriched leukemic progenitor cells. Disclosures Schuster: Immatics Biotechnologies GmbH: Employment. Kowalewski:Immatics Biotechnologies GmbH: Employment.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2169-2169
Author(s):  
Linus Backert ◽  
Daniel J. Kowalewski ◽  
Simon D. Walz ◽  
Heiko Schuster ◽  
Claudia Berlin ◽  
...  

Abstract Effective antigen-specific T-cell-based cancer immunotherapy requires exact knowledge of tumor-associated epitopes that can act as rejection antigens. While the current paradigm views mutation-derived neoantigens as the most promising targets, we have recently demonstrated that tumor-specific T-cell responses target panels of non-mutated tumor-associated self antigens in patients with hematological malignancies. Using the approach of direct HLA ligandome analysis by mass spectrometry, we were able to identify and characterize multiple immunogenic and naturally presented tumor-associated antigens for chronic lymphocytic leukemia (CLL, Kowalewski et. al., PNAS 2015), acute myeloid leukemia (AML, Berlin/Kowalewski et. al., Leukemia 2014), multiple myeloma (MM, Walz/Stickel et. al., Blood 2015) and chronic myeloid leukemia (CML, unpublished data). In this project we performed a comprehensive meta-analysis of our HLA ligandome data from different hematological malignancies (HM) to screen for the existence of "pan-leukemia" antigens for the broad application in T-cell based immunotherapy approaches in hematological malignancies. In a first step we performed unsupervised cluster analyses to identify similarities and differences in the HLA ligandome landscape of HM. To avoid skewed clustering due to HLA types of the samples, these analyses were performed specifically for the most common HLA allotypes in our datasets (A*02 (n=46 HM), A*03 (n=28 HM)). Distinct clustering was shown for the different entities (CLL, MM, CML, AML) as well as for the lymphoid versus myeloid malignancies on the HLA ligandome level. To identify leukemia-exclusive HLA ligands we compared the HLA ligandomes of CLL (HLA class I, n=35; HLA class II, n=30), AML (HLA class I, n=19; HLA class II, n=20), MM (HLA class I, n=15; HLA class II n=12) and CML (HLA class I, n=16; HLA class II n=15) with our normal tissue database including 153 HLA class I and 82 HLA class II ligandomes of various normal tissues (including normal blood, bone marrow and spleen). Cluster analysis of the leukemia-exclusive antigens showed identical clustering of the different entities and lymphoid/myeloid malignancies as shown before for the whole HLA ligandome and the respective source proteins. Overlap analysis revealed only 0.6% (16/2,716) and 0.3% (10/3,141) of the identified leukemia-exclusive HLA class I and class II antigens, respectively, to be represented across all analyzed hematological malignancies. These "pan-leukemia" antigens (n=26) include candidate antigens associated with T-cell activation (HSH2D), lymphoid development (IL2RF) and oncogenesis (LYN protooncogene, RAB5A). However, none of these "pan-leukemia" antigens shows frequent representation (>20%) across all 4 entities (CLL, AML, MM, CML). Furthermore, none of the "pan-leukemia" source proteins yielded corresponding peptides represented in all entities. To identify "pan-leukemia" HLA ligands, overlap analyses were performed in an allotype-specific fashion for the most frequent HLA allotypes (HLA-A*01, -A*02, -A*03, -A*24, -B*07, -B*08, -B*18) in our cohort. 0% (0/92) of HLA-A*01-, 1.6% (12/744) of HLA-A*02-, 1.4% (8/561) of HLA-A*03-, 0% (0/331) of HLA-A*24-, 0.1% (1/830) of HLA-B*07-, 0% (0/472) of HLA-B*08- and 0.8% (5/600) of the HLA-B*18-restricted peptides showed representation in all four entities. Out of these 26 "pan-leukemia" HLA ligands, only two (1 HLA-A*02-, 1 HLA-A*03-restricted peptide) showed frequent representation (>20%) in all entities. These peptides represent "pan-leukemia" targets that might be used for immunotherapeutic approaches in patients expressing the respective HLA allotype. Taken together, our approach of direct HLA ligandome analysis of hematological malignancies identified a small panel of "pan-leukemia"- proteins and peptides that show cancer-exclusive representation across all 4 included hematological malignancies. However, due to the low presentation frequencies of the candidate targets within the different entities, target discovery and compound development for the immunotherapy of HM may be more effectively achieved in an entity-specific or even patient-individualized manner. Disclosures Kowalewski: Immatics Biotechnologies GmbH: Employment. Schuster:Immatics Biotechnologies GmbH: Employment. Brümmendorf:Pfizer: Consultancy, Honoraria; Ariad: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Patent on the use of imatinib and hypusination inhibitors: Patents & Royalties. Niederwieser:Novartis Oncology Europe: Research Funding, Speakers Bureau; Amgen: Speakers Bureau. Weisel:Celgene: Consultancy, Honoraria, Research Funding; Janssen: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Onyx: Consultancy; BMS: Consultancy, Honoraria; Takeda: Consultancy, Honoraria; Novartis: Honoraria.


2021 ◽  
Vol 9 (10) ◽  
pp. e003404
Author(s):  
Ana Marcu ◽  
Andreas Schlosser ◽  
Anne Keupp ◽  
Nico Trautwein ◽  
Pascal Johann ◽  
...  

BackgroundAtypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear which epitopes T cells might recognize on AT/RT cells.MethodsHere, we report a comprehensive mass spectrometry (MS)-based analysis of naturally presented human leukocyte antigen (HLA) class I and class II ligands on 23 AT/RTs. MS data were validated by matching with a human proteome dataset and exclusion of peptides that are part of the human benignome. Cryptic peptide ligands were identified using Peptide-PRISM.ResultsComparative HLA ligandome analysis of the HLA ligandome revealed 55 class I and 139 class II tumor-exclusive peptides. No peptide originated from the SMARCB1 region. In addition, 61 HLA class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas, but no concordance was found with extracranial tumors. More than 80% of AT/RT exclusive peptides were able to successfully prime CD8+ T cells, whereas naturally occurring memory responses in AT/RT patients could only be detected for class II epitopes. Interestingly, >50% of AT/RT exclusive class II ligands were also recognized by T cells from glioblastoma patients but not from healthy donors.ConclusionsThese findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA class I and class II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion.


2021 ◽  
Author(s):  
Ana Marcu ◽  
Andreas Schlosser ◽  
Anne Keupp ◽  
Nico Trautwein ◽  
Pascal Johann ◽  
...  

Atypical teratoid/rhabdoid tumors (AT/RT) are highly aggressive CNS-tumors of infancy and early childhood. Hallmark is the surprisingly simple genome with inactivating mutations or deletions in the SMARCB1 gene as the oncogenic driver. Nevertheless, AT/RTs are infiltrated by immune cells and even clonally expanded T cells. However, it is unclear, which epitopes T-cells might recognize on AT/RT cells. Here, we report a comprehensive MS-based analysis of naturally presented HLA-class-I and class-II ligands on 23 AT/RTs. Comparative HLA ligandome analysis of the HLA-ligandome revealed 55 class-I and 139 class-II tumor-exclusive peptides. No peptide originated from the SMARCB1-region. In addition, 61 HLA-class I tumor-exclusive peptide sequences derived from non-canonically translated proteins. Combination of peptides from natural and cryptic class I and class II origin gave optimal representation of tumor cell compartments. Substantial overlap existed with the cryptic immunopeptidome of glioblastomas but no concordance was found with extracranial tumors. More than 80% of AT/RT-exclusive peptides were able to successfully prime CD8+ T-cells, whereas naturally occurring memory responses in AT/RT-patients could only be detected for class-II epitopes. Interestingly, >50% of AT/RT-exclusive class-II ligands were also recognized by T-cells from glioblastoma patients but not from healthy donors. These findings highlight that AT/RTs, potentially paradigmatic for other pediatric tumors with a low mutational load, present a variety of highly immunogenic HLA-class-I and class-II peptides from canonical as well as non-canonical protein sources. Inclusion of such cryptic peptides into therapeutic vaccines would enable an optimized mapping of the tumor cell surface, thereby reducing the likelihood of immune evasion.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4234-4234
Author(s):  
Yuxuan Liu ◽  
Anke Van Den Berg ◽  
Bea Rutgers ◽  
Rianne Veenstra ◽  
Debora de Jong ◽  
...  

Abstract Introduction Hodgkin Reed-Sternberg (HRS) cells are characterized by a general loss of B cell phenotype, whereas antigen presenting properties are commonly retained. HLA class I and class II are expressed in most EBV+ cHL cases, with an even enhanced expression in some cases. The mechanisms underlying enhanced or lost HLA expression are unknown. Promyelocytic leukemia protein (PML) is the main component of nuclear bodies (NBs) and it organizes the chromatin structure into loops by anchoring matrix attachment regions to the nuclear matrix. The PML transcript can be processed into seven different isoforms. Downregulation of PML isoform III or V results in a reduced HLA-A and HLA-G expression in Jurkat T cells, whereas PML enhances HLA class II expression by upregulating the class II transactivator (CIITA). Special AT-rich region binding protein 1 (SATB1) has been shown to be associated with PML-NBs in the HLA region. Downregulation of SATB1 in Jurkat cells results in an enhanced expression of HLA-A, HLA-G and HLA-H. Aim To determine if specific PML isoforms and SATB1 regulate HLA expression in cHL cell lines. Methods We stained HLA class I, HLA class II, PML-NBs and SATB1 in 54 EBV+ cHL cases and in 27 EBV- cHL cases. We analyzed HLA class I, HLA class II, PML isoforms I to V and SATB1 mRNA expression levels by qRT-PCR in cHL cell lines (n=6). Next, we inhibited SATB1 and PML expression in the cHL cell line L1236 using shRNA constructs. The effects of the shRNA constructs on HLA protein expression levels were assessed by Western blot and flow cytometry. Results We observed a normal HLA class I membrane expression in 40% of EBV+ and 20% of EBV- cases. There was a stronger than normal HLA class I protein expression in approximately 40% of EBV+ cHL and not in EBV- cHL patients. The number of PML-NBs was positively correlated to the level of HLA class I expression (p<0.01), whereas the percentage of SATB1 positive cells was inversely correlated with the level of HLA class I expression in EBV+ cHL cases (p<0.05). We observed normal HLA class II expression in 50% of EBV+ and 50% of EBV- cases. A stronger than normal HLA class II expression was observed in 4 EBV+ and 1 EBV- cHL patients. The number of PML-NBs and the percentage of SATB1 positive cells were not correlated with classical HLA class II expression in EBV+, EBV- or the total cHL patient group. We further investigate the association of PML, SATB1 and HLA class I and II in six cell lines. At the mRNA level, significant positive correlations were found between PML-III and HLA-C and between PML-III and β2M. Borderline significant positive correlations were found between PML-V and CIITA and between PML-V and HLA-DPB1. Suggestive, though not significant, correlations were observed of various PML isoforms and SATB1 for several HLA genes. The limited number of cell lines, precluded more definitive conclusions for the other comparisons. To further study the role of specific PML isoforms and SATB1 in regulation of HLA gene expression, we inhibited PML-III, PML-V or SATB1 in L1236 by shRNA-based knockdown. The PML-III shRNA induced a ∼80% reduction at the PML-III mRNA level, but did not affect membranous HLA class I expression and possibly affected HLA class II expression levels in L1236. The shRNA for PML-V was not effective and needs to be optimized and experiments with a pan-PML shRNA are ongoing. The SATB1 shRNA1 induced a ∼75% at the SATB1 mRNA level and a ∼80% reduction at the protein level, while SATB1 shRNA2 showed a ∼75% reduction and a ∼25% reduction, respectively. Inhibition of SATB1 by shRNA1 significantly upregulated HLA class II expression (P=0.02) and no significant effect on HLA class I expression. Inhibition of SATB1 by shRNA2 showed no significant effect on HLA class I and II expression. Conclusion PML and SATB1 protein levels are associated with HLA class I in HRS cells. Various negative associations of SATB1 with HLA genes at the mRNA level support a possible regulatory effect. This was indeed observed upon inhibition of SATB1 in L1236 that induced enhanced HLA-DR/DP/DQ expression. The PML regulation appears to be complex with different PML isoforms showing different associations with specific HLA genes. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document