One Dimensional Steam Ejector Model Based on Real Fluid Property

Author(s):  
Borirak Kitrattana ◽  
Satha Aphornratana ◽  
Tongchana Thongtip
10.14311/1787 ◽  
2013 ◽  
Vol 53 (2) ◽  
Author(s):  
Jakub Hübner ◽  
Pavel Vrba

Feasible soft-X-ray amplification in the CVI and NVII Balmer transition is investigated in a capillary discharge. The best conditions and parameters for the experimental set-up are found for an ablative capillary. The most optimistic results have shown that the gain would be greater than one, which is the condition for successful ASE (Amplified spontaneous emission) in capillary discharges. The capillary discharge evolution is modeled using the NPINCH program, employing a one-dimensional physical model based on MHD equations. The information about the capillary discharge evolution is processed in the FLY, FLYPAPER, FLYSPEC programs, enabling the population to be modeled on specific levels during capillary discharge.


Author(s):  
Yuqing Li ◽  
Xing He ◽  
Dawen Xia

Chaotic maps with higher chaotic complexity are urgently needed in many application scenarios. This paper proposes a chaotification model based on sine and cosecant functions (CMSC) to improve the dynamic properties of existing chaotic maps. CMSC can generate a new map with higher chaotic complexity by using the existing one-dimensional (1D) chaotic map as a seed map. To discuss the performance of CMSC, the chaos properties of CMSC are analyzed based on the mathematical definition of the Lyapunov exponent (LE). Then, three new maps are generated by applying three classical 1D chaotic maps to CMSC respectively, and the dynamic behaviors of the new maps are analyzed in terms of fixed point, bifurcation diagram, sample entropy (SE), etc. The results of the analysis demonstrate that the new maps have a larger chaotic region and excellent chaotic characteristics.


2016 ◽  
Vol 30 (03) ◽  
pp. 1650003 ◽  
Author(s):  
Aleksandar Demić ◽  
Vitomir Milanović ◽  
Jelena Radovanović ◽  
Milenko Musić

Bound states degenerated in energy (and differing in parity) may form in one-dimensional quantum mechanics if the potential is unbounded from below. We focus on symmetric potential and present quasi-exactly solvable (QES) model based on WKB method. The application of this method is limited on slow-changing potentials. We consider the overlap integral of WKB wave functions [Formula: see text] and [Formula: see text] which correspond to energies [Formula: see text] and [Formula: see text], and by setting [Formula: see text], we determine the type of spectrum depending on parameter [Formula: see text] which arises from this method. For finite value [Formula: see text], we show that the entire spectrum will consist of degenerated bound states.


1974 ◽  
Vol 10 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Mary F. Pikul ◽  
Robert L. Street ◽  
Irwin Remson

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Bryan T. Campbell ◽  
Roger L. Davis

A new quasi-one-dimensional procedure (one-dimensional with area change) is presented for the transient solution of real-fluid flows in lines and volumes including heat transfer effects. The solver will be integrated into a larger suite of software modules developed for simulating rocket engines and propulsion systems. The solution procedure is coupled with a state-of-the-art real-fluid property database so that both compressible and incompressible fluids may be considered using the same procedure. The numerical techniques used in this procedure are described. Test cases modeling transient flow of nitrogen, water, and hydrogen are presented to demonstrate the capability of the current technique.


Sign in / Sign up

Export Citation Format

Share Document