Protection of polymer from atomic-oxygen erosion using Al2O3 atomic layer deposition coatings

2008 ◽  
Vol 516 (12) ◽  
pp. 4036-4039 ◽  
Author(s):  
Russell Cooper ◽  
Hari P. Upadhyaya ◽  
Timothy K. Minton ◽  
Michael R. Berman ◽  
Xiaohua Du ◽  
...  
2013 ◽  
Vol 102 (13) ◽  
pp. 132904 ◽  
Author(s):  
Yukio Fukuda ◽  
Hiroki Ishizaki ◽  
Yohei Otani ◽  
Chiaya Yamamoto ◽  
Junji Yamanaka ◽  
...  

2003 ◽  
Vol 766 ◽  
Author(s):  
Kyoung-Il Na ◽  
Se-Jong Park ◽  
Woo-Cheol Jeong ◽  
Se-Hoon Kim ◽  
Sung-Eun Boo ◽  
...  

AbstractFor a diffusion barrier against Cu, tantalum nitride (TaN) films have been successfully deposited by both conventional thermal atomic layer deposition (ALD) and plasma assisted atomic layer deposition (PAALD), using pentakis (ethylmethlyamino) tantalum (PEMAT) and ammonia (NH3) as precursors. The growth rate of PAALD TaN at substrate temperature 250° was slightly higher than that of ALD TaN (0.80 Å/cycle for PAALD and 0.75 Å/cycle for ALD). Density of TaN films deposited by PAALD was as high as 11.0 g/cm3, considerably higher compared to the value of 8.3 g/cm3 obtained by ALD. The N: Ta ratio for ALD TaN was 44: 37 in composition and the film contained approximately 8∼10 atomic % carbon and 11 atomic % oxygen impurities. On the other hand, the ratio for PAALD TaN layers was 47: 44 and the respective carbon and oxygen contents of TaN layers decreased to 3 atomic % and 4 atomic %. The stability of 10 nm-thick TaN films as a Cu diffusion barrier was tested through thermal annealing for 30 minutes in N2 ambient and characterized by XRD, which proves the PAALD deposited TaN film to maintain better barrier properties against Cu below 800°.


2021 ◽  
Vol 3 (1) ◽  
pp. 59-71
Author(s):  
Degao Wang ◽  
Qing Huang ◽  
Weiqun Shi ◽  
Wei You ◽  
Thomas J. Meyer

2018 ◽  
Author(s):  
Peter George Gordon ◽  
Goran Bacic ◽  
Gregory P. Lopinski ◽  
Sean Thomas Barry

Al-doped ZnO (AZO) is a promising earth-abundant alternative to Sn-doped In<sub>2</sub>O<sub>3</sub> (ITO) as an n-type transparent conductor for electronic and photovoltaic devices; AZO is also more straightforward to deposit by atomic layer deposition (ALD). The workfunction of this material is particularly important for the design of optoelectronic devices. We have deposited AZO films with resistivities as low as 1.1 x 10<sup>-3</sup> Ωcm by ALD using the industry-standard precursors trimethylaluminum (TMA), diethylzinc (DEZ), and water at 200<sup>◦</sup>C. These films were transparent and their elemental compositions showed reasonable agreement with the pulse program ratios. The workfunction of these films was measured using a scanning Kelvin Probe (sKP) to investigate the role of aluminum concentration. In addition, the workfunction of AZO films prepared by two different ALD recipes were compared: a “surface” recipe wherein the TMA was pulsed at the top of each repeating AZO stack, and a interlamellar recipe where the TMA pulse was introduced halfway through the stack. As aluminum doping increases, the surface recipe produces films with a consistently higher workfunction as compared to the interlamellar recipe. The resistivity of the surface recipe films show a minimum at a 1:16 Al:Zn atomic ratio and using an interlamellar recipe, minimum resistivity was seen at 1:19. The film thicknesses were characterized by ellipsometry, chemical composition by EDX, and resistivity by four-point probe.<br>


2019 ◽  
Author(s):  
Jiajia Tao ◽  
Hong-Ping Ma ◽  
Kaiping Yuan ◽  
Yang Gu ◽  
Jianwei Lian ◽  
...  

<div>As a promising oxygen evolution reaction semiconductor, TiO2 has been extensively investigated for solar photoelectrochemical water splitting. Here, a highly efficient and stable strategy for rationally preparing GaON cocatalysts on TiO2 by atomic layer deposition is demonstrated, which we show significantly enhances the</div><div>photoelectrochemical performance compared to TiO2-based photoanodes. For TiO2@20 nm-GaON core-shell nanowires a photocurrent density up to 1.10 mA cm-2 (1.23 V vs RHE) under AM 1.5 G irradiation (100 mW cm-2) has been achieved, which is 14 times higher than that of TiO2 NWs. Furthermore, the oxygen vacancy formation on GaON as well as the band gap matching with TiO2 not only provides more active sites for water oxidation but also enhances light absorption to promote interfacial charge separation and migration. Density functional theory studies of model systems of GaON-modified TiO2 confirm the band gap reduction, high reducibility and ability to activate water. The highly efficient and stable systems of TiO2@GaON core-shell nanowires provide a deeper understanding and universal strategy for enhancing photoelectrochemical performance of photoanodes now available. </div>


2019 ◽  
Author(s):  
Claire Burgess ◽  
Farzad Mardekatani Asl ◽  
Valerio Zardetto ◽  
Herbert Lifka ◽  
Sjoerd Veenstra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document