Residual stress on nanocrystalline silicon thin films deposited under energetic ion bombardment by using internal ICP-CVD

2009 ◽  
Vol 517 (14) ◽  
pp. 4100-4103 ◽  
Author(s):  
H.C. Lee ◽  
S.P. Hong ◽  
S.K. Kang ◽  
G.Y. Yeom
1998 ◽  
Vol 536 ◽  
Author(s):  
A. B. Pevtsov ◽  
N. A. Feoktistov ◽  
V. G. Golubev

AbstractThin (<1000 Å) hydrogenated nanocrystalline silicon films are widely used in solar cells, light emitting diodes, and spatial light modulators. In this work the conductivity of doped and undoped amorphous-nanocrystalline silicon thin films is studied as a function of film thickness: a giant anisotropy of conductivity is established. The longitudinal conductivity decreases dramatically (by a factor of 109 − 1010) as the layer thickness is reduced from 1500 Å to 200 Å, while the transverse conductivity remains close to that of a doped a- Si:H. The data obtained are interpreted in terms of the percolation theory.


2001 ◽  
Vol 687 ◽  
Author(s):  
George M Dougherty ◽  
Timothy Sands ◽  
Albert P. Pisano

AbstractPolycrystalline silicon thin films that are permeable to fluids, known as permeable polysilicon, have been reported by several researchers. Such films have great potential for the fabrication of difficult to make MEMS structures, but their use has been hampered by poor process repeatability and a lack of physical understanding of the origin of film permeability and how to control it. We have completed a methodical study of the relationship between process, microstructure, and properties for permeable polysilicon thin films. As a result, we have determined that the film permeability is caused by the presence of nanoscale pores, ranging from 10-50 nm in size, that form spontaneously during LPCVD deposition within a narrow process window. The unusual microstructure within this process window corresponds to the transition between a semicrystalline growth regime, exhibiting tensile residual stress, and a columnar growth regime exhibiting compressive residual stress. A simple kinetic model is proposed to explain the unusual morphology within this transition regime. It is determined that measurements of the film residual stress can be used to tune the deposition parameters to repeatably produce permeable films for applications. The result is a convenient, single-step process that enables the elegant fabrication of many previously challenging structures.


2009 ◽  
Vol 255 (19) ◽  
pp. 8252-8256 ◽  
Author(s):  
Thanh Nga Nguyen ◽  
Van Duy Nguyen ◽  
Sungwook Jung ◽  
Junsin Yi

2002 ◽  
Vol 403-404 ◽  
pp. 91-96 ◽  
Author(s):  
C. Gonçalves ◽  
S. Charvet ◽  
A. Zeinert ◽  
M. Clin ◽  
K. Zellama

1997 ◽  
Vol 46 (10) ◽  
pp. 2015
Author(s):  
CHEN GUO ◽  
GUO XIAO-XU ◽  
ZHU MEI-FANG ◽  
SUN JING-LAN ◽  
XU HUAI-ZHE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document